You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Computerized Robotic Delayering and Polishing System

    SBC: Spectral Energies, LLC            Topic: DMEA18B001

    The proposed research and technical objectives in this project deal with computerized automatic delayering and polishing system that would be applicable to both commercial and government semiconductor device research and development with applications including Failure Analysis (FA), Fault Isolation (FI), and Reverse Engineering (RE) of semiconductor microelectronic devices. This project could hel ...

    STTR Phase I 2019 Department of DefenseDefense Microelectronics Activity
  2. MEMS Based Solutions for an Integrated and Miniaturized Multi-Spectrum Energy Harvesting and Conservation System

    SBC: Radiance Technologies, Inc.            Topic: T301

    The objective of this proposal is to develop three unique energy harvesting technologies utilizing our existing research strengths that will be of interest and utility to NASA applications and environmental conditions. By developing multiple technologies, NASA will be able to harvest energy from multiple waste energy sources, namely environmental vibrations, thermal energy, and solar flux. These d ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  3. Aeroservoelastic Multifidelity Design of Biomimetic Aircraft (AMuBA)

    SBC: Intelligent Automation, Inc.            Topic: T15

    NASA has been investigating morphing aircraft for multi-mission capabilities and performance improvements in existing fixed-wing aircraft. In addition, the design of aeroelastic aircraft that can control the structural flexibility to their advantage, is an open area of research and development. In spite of the plethora of work on morphing aircraft and long slender wings, the goal of fielding such ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  4. Energy and Velocity Analyzer for Distributions of Electric Rockets

    SBC: Plasma Controls, LLC            Topic: T2

    Plasma Controls, LLC (SBC) and Colorado State University (RI) will mature an energy and species plasma diagnostic for use with plasma thrusters. The combined Energy and Velocity Analyzer for Distributions of Electric Rockets, or the lsquo;E-VADERrsquo;, is needed especially for characterizing the plasma plume of Hall thrusters, where researchers desire to know ion energies and charged species frac ...

    STTR Phase I 2019 National Aeronautics and Space Administration
  5. Dual Mode Green Monopropellant Propulsion System for Interplanetary Missions

    SBC: Plasma Processes, LLC            Topic: T2

    Today many spacecraft carry two propulsion options: high thrust required for high acceleration maneuvers such as orbit insertion and rapid response; and low thrust required for station keeping and less critical maneuvers. A new class of non-toxic monopropellants, such as AF-M315E and LMP-103S, perform well in both high and low thrust regimes. Significant investments are maturing both monopropellan ...

    STTR Phase I 2019 National Aeronautics and Space Administration
  6. OrFPGA: An Empirical Performance Tuning Tool for FPGA Designs

    SBC: RNET TECHNOLOGIES INC            Topic: T1101

    With the capacity and performance of FPGAs suitable for space borne applications continuously increasing, the design of FPGAs is becoming increasingly complex involving trading off or simultaneous optimization of space, speed, and power. RNET and ANL are proposing to develop software infrastructure that facilitates automatic performance tuning of FPGAs in terms of speed, power, and size. We introd ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  7. Air Vehicle Gust Response analysis for Conceptual Design

    SBC: Research In Flight, LLC            Topic: T15

    Research in Flight (RIF) and Auburn University are offering the development of an advanced, robust tool and methodology that allows the simulation and modeling of gust and wake vortex encounters for Distributed Electric Propulsion (DEP) enabled Urban Air Mobility (UAM) vehicle concepts. DEP enabled UAM concepts offer the potential for large performance improvements by exploiting favorable synergie ...

    STTR Phase I 2019 National Aeronautics and Space Administration
  8. Vortex Control for Low-Noise DEP Urban Aircraft

    SBC: Surfplasma, Inc.            Topic: T15

    Suppression of noise from aircraft is a vital NASA goal, especially important for the vision of Urban Air Mobility. Small urban aircraft may utilize Distributed Electric Propulsion along with advanced structural and electric motor/storage technologies to achieve the necessary flight capability. However, these aircraft utilize propellers or fans to achieve the necessary thrust, with attendant commu ...

    STTR Phase I 2019 National Aeronautics and Space Administration
  9. Extensible Modeling to Create Knowledgebase for AM Processing of Alloy GrCop-84

    SBC: Applied Optimization, Inc            Topic: T12

    The research objective of the proposed work is to demonstrate feasibility of utilizing extensible modeling to create an AM knowledgebase for copper alloy, GrCop-84, and utilize it to design an AM process for GrCop-84. The work plan has three tasks: (1) Utilize process modeling to demonstrate feasibility of predicting AM process parameters for alloy GrCop-84 for the powder bed and blown powder proc ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  10. Prediction of Plume Induced Rock Fracture for Landers

    SBC: CFD Research Corporation            Topic: T9

    The landing surface damage and liberation of debris particles caused by rocket plume impingement flow during spacecraft propulsive landing on unprepared surfaces of Moon, Mars, and other celestial bodies poses a high risk for robotic and human exploration activities. Simply determining whether the plume induced loads exceed the bedrock bearing capacity threshold is not sufficient. An integrated m ...

    STTR Phase I 2018 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government