You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Additive Manufacture of Refractory Metal Propulsion Components

    SBC: Geoplasma, LLC            Topic: T9

    Niobium alloy (C-103) reaction control system (RCS) chambers have been used on numerous NASA programs. However at elevated temperatures, the strength of C-103 decreases significantly. Higher strength niobium alloys have been developed, but these alloys lack the formability of C-103. Recently, Additive Manufacture (AM) of niobium and C-103 has been demonstrated using powder bed electron beam me ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  2. Advanced Hot Reservoir Variable Conductance Heat Pipes for Planetary Landers

    SBC: Advanced Cooling Technologies, Inc.            Topic: T9

    In contrast to the standard cold reservoir Variable Conductance Heat Pipe (VCHP) where for tight thermal control an electrical heater is used for the reservoir (wicked), Advanced Cooling Technologies, Inc (ACT) developed a hot reservoir VCHP with the reservoir thermally coupled to the evaporator. This novel feature will provide a tight temperature control capability without the need for control po ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  3. Advanced Unsteady Turbulent Combustion Simulation Capability for Space Propulsion Systems

    SBC: STREAMLINE NUMERICS, INC.            Topic: T901

    The innovation proposed here is a high performance, high fidelity simulation capability to enable accurate, fast and robust simulation of unsteady turbulent, reacting flows involving cryogenic propellants (such as LOX/LH2 and LOX/LCH4). The key features of this proposed capability are: (a) Hybrid RANS-LES (HRLES) methodology, and (b) flamelet modeling for turbulent combustion incorporated in a pr ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  4. Air Vehicle Gust Response analysis for Conceptual Design

    SBC: Research In Flight, LLC            Topic: T15

    Research in Flight (RIF) and Auburn University are offering the development of an advanced, robust tool and methodology that allows the simulation and modeling of gust and wake vortex encounters for Distributed Electric Propulsion (DEP) enabled Urban Air Mobility (UAM) vehicle concepts. DEP enabled UAM concepts offer the potential for large performance improvements by exploiting favorable synergie ...

    STTR Phase I 2019 National Aeronautics and Space Administration
  5. Algorithms for Look-down Infrared Target Exploitation

    SBC: Signature Research, Inc.            Topic: 1

    Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  6. An Automated High Aspect Ratio Mesher for Computational Fluid Dynamics

    SBC: Ciespace Corporation            Topic: T801

    Computational fluid dynamics (CFD) simulations are routinely used while designing, analyzing, and optimizing air- and spacecraft. An important component of CFD simulations is mesh generation, or discretization into polygonal or polyhedral cells, of the domain being analyzed. The overall computational cost and accuracy of simulations depend heavily on mesh quality – the size, shape, and structur ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  7. A Scalable Gas-Particle Flow Simulation Tool for Lander Plume-Surface Interaction and Debris Prediction

    SBC: CFD RESEARCH CORP            Topic: T9

    Spacecraft propulsive landings on unprepared regolith present in extra-terrestrial environments pose a high risk for space exploration missions. Plume/regolith interaction results in (1) the liberation of dust and debris particles that may collide with the landing vehicle and (2) craters whose shape itself can influence vehicle dynamics. To investigate such gas-granular interactions for large-scal ...

    STTR Phase I 2018 National Aeronautics and Space Administration
  8. Autonomous Navigation on Icy Moons and Ocean Worlds

    SBC: VETH RESEARCH ASSOCIATES LLC            Topic: T4

    Technology currently used for terrestrial navigation is extremely limited in the challenging environments on icy moons and ocean worlds such as Europa. Autonomous platforms used to collect data from beneath these ice and ocean surfaces cannot depend on access to satellite or any other electromagnetic communication. Autonomous systems in these environments are required to perform highly-complex tas ...

    STTR Phase I 2019 National Aeronautics and Space Administration
  9. Concurrent High-Fidelity Measurements and Simulations for Advancing the Design of Rotating Detonation Engines

    SBC: Spectral Energies, LLC            Topic: T2

    Rotating Detonation Engine (RDE) design is challenging due to the lack of in-depth understanding of many key mixing and combustion processes. The RDE flow field is a nonuniform mixture of fuel and oxidizer concentrations with strong injector effects, large turbulence effects, multiple shockwaves, and shear layers. These inhomogeneities can lead to significant combustion inefficiencies which have a ...

    STTR Phase I 2019 National Aeronautics and Space Administration
  10. Deep Learning Applied to Detecting Salient Features and Building Better 3D Models

    SBC: Mesh Robotics, LLC            Topic: T4

    We propose to develop a method to effectively utilize the massive amount of image and range data that cameras and laser scanners can generate for an autonomous navigation system. Our innovative approach is to use deep learning to detect and segment only the most useful portions of the data and to use that to build better 3D models. We have proven methods for building accurate 3D models of the en ...

    STTR Phase I 2018 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government