You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. M&S Uncertainty Quantification

    SBC: OPTIMIZATION TECHNOLOGIES, INC.            Topic: MDA12T007

    OptTek Systems, Inc (OptTek), proposes an affordable, effective UQ capability for both legacy and new BMDS M & S. The OptTek Team includes research institution partner Oak Ridge National Laboratory (ORNL) and subcontractor RTSync Corporation (RTSync). The proposed BMDS M & S UQ capability maximizes insertability into existing and future MDA BMDS M & S-supported Event processes, analysis methods, a ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  2. Test Article Printing with Laser Additive Manufacturing (TAP-LAM) for Threat Surrogate Target Production

    SBC: MV INNOVATIVE TECHNOLOGIES, LLC            Topic: MDA17T001

    Optonicus proposes development of the TAP-LAM (Test Article Printing with Laser Additive Manufacturing for Threat Surrogate Target Production) powder bed fusion and directed energy depositions systems. The TAP-LAM metal additive manufacturing system will advance strategic missile defense system testing capabilities by improving 3D printing methods to rapidly produce large-scale threat surrogate ta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  3. Fabrication of Ta-Hf-C-based Ultra High Temperature Composites via a

    SBC: UES INC            Topic: MDA09T002

    This Phase I STTR program seeks a new fabrication method to produce stronger (>100 kpsi) and tougher (>10 MPa m1/2) ultra high temperature Ta-Hf-C-based composites (UHTC) with an outstanding oxidation resistance for use as thermal protection systems for hypersonic applications, as well as for advanced rocket nozzle throat components. UES will apply a novel "Top Down" approach to control the micro ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  4. Lightweight Structural Components of a Missile Body

    SBC: TEXAS RESEARCH INSTITUTE , AUSTIN, INC.            Topic: MDA17T004

    The Missile Defense Agency (MDA) has a need for weight-optimized solutions for future platforms of large missile structures. A significant weight reduction on these MDA platforms could increase maneuverability of the payload and allow the missile to launch additional kill vehicles. High temperature composite materials offer the means by which low cost and lighter weight missile structures can be a ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  5. Innovative Polishing Technology for Fabrication of High Performance Epi-ready GaSb Substrates

    SBC: Sinmat Inc            Topic: MDA12T003

    Antimony containing III-V semiconducting compounds are particularly attractive for the fabrication of a wide variety of electronic and optoelectronic devices such as photo detectors operating in the long wave infrared wavelength (12-32µm) range. The production of epi quality GaSb wafers still remains one of the important problems for rapid commercialization of GaSb devices. Sinmat Inc. proposes a ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  6. M&S Uncertainty Quantification

    SBC: NUMERICA CORPORATION            Topic: MDA12T007

    A goal of Uncertainty Quantification (UQ) is to use computer simulation of complex systems to make scientifically informed assessments for high-consequence decisions. Because end-to-end empirical data is difficult to obtain for the Ballistic Missile Defense System (BMDS), computer simulation provides the best method for understanding BMDS capabilities against a wide range of threats. Numerica Co ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  7. Novel Directed Energy Options in Ballistic Missile Defense

    SBC: Applied Physical Electronics, L.C.            Topic: MDA09T010

    Ballistic Missle Defense (BMD) systems vary wildly in size and scope and include ground-based interceptor platforms with anti-ballistic missile (ABM) warheads, air-based high-power laser platforms such as the Airborne Laser (ABL), and ship-based systems such as the Aegis BMD system. The problems addressed in this proposal are the traditionally large sizes, number of support systems required, and l ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  8. Lightweight Magnesium Components of a Missile Body

    SBC: TERVES, LLC            Topic: MDA17T004

    Magnesium alloys have 35% lower density compared to aluminum, with improved temperature stability compared to high strength aluminum.They can also be fabricated with minimum gauge thicknesses considerably thinner than fiber composites, and are weldable, with much higher impact resistance.Traditional magnesium alloys, however, have had lower strengths than more developed aluminum alloys.Powder meta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  9. Combined RF/IR Data Correlation

    SBC: TECHNOLOGY SERVICE CORP            Topic: MDA12T001

    Aegis BMD 5.0 CU will expand and update the Baseline 9 MRBM and IRBM threat set, while Aegis BMD 5.1 will have capabilities against more sophisticated short to intermediate range ballistic missiles. An ability to discriminate this wider set of increasingly sophisticated threats is essential. Technology Service Corporation (TSC) and the Michigan Tech Research Institute (MTRI) propose to identify fe ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  10. Low Cost, High Performance Transmit/Receive Integrated Circuits on a single chip

    SBC: NOISEFIGURE RESEARCH LLC            Topic: MDA09T004

    Traditional RADAR implementations suffer from bulky transmitters with cluttered microwave plumbing and antenna support systems that make systems expensive. Today, phased array transceiver architectures providing moderate power (10–100W) can provide RADAR performance with beam-steering capabilities with modest size of the systems. However, these conventional phase array architectures do not scale ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government