You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Complex Networks for Computational Urban Resilience (CONCUR)

    SBC: Perceptronics Solutions, Inc.            Topic: ST17C003

    CONCUR develops a computational framework for assessing and characterizing urban environments stability or fragility in response to volatility and stress, identifying specific weaknesses as well as key tipping points which could lead to rapid systemic failure. CONCUR explicitly models urban environments as emergent complex systems, focusing attention on the critical triggers that could lead to rap ...

    STTR Phase I 2018 Department of DefenseDefense Advanced Research Projects Agency
  2. REsilience & Stability In DENse Terrains (RESIDENT)

    SBC: BOSTON FUSION CORP            Topic: ST17C003

    Boston Fusion Corp. and Arizona State University will research and develop REsilience & Stability in DENse Terrains (RESIDENT), a multi-model, multi-scale framework for assessing indicators of stability and resilience in dense urban environments. Our team consists of subject matter experts in the Social and Computer Sciences providing the bedrock on which to build accurate mathematical models of u ...

    STTR Phase I 2018 Department of DefenseDefense Advanced Research Projects Agency
  3. STability and Resilience Analysis Technology for Urban Systems analysis (STRATUS)

    SBC: Systems & Technology Research LLC            Topic: ST17C003

    The unique scale, population density, complexity, and connectedness of megacities requires new tools for detecting and assessing risks related to civil unrest, rule of law, terrorism, and other sources of instability, and for understanding the underlying dynamics. In addition, gray zone operations pose a new and strategically important class of threats to the stability of nation states and cities ...

    STTR Phase I 2018 Department of DefenseDefense Advanced Research Projects Agency
  4. Assess Stability and Anti-Fragility of Dense Urban Terrains

    SBC: Cordillera Applications Group, Inc.            Topic: ST17C003

    The objective of this proposal is to examine the feasibility of defining and measuring key dimensions of an urban system to include its essential functions and networks, and whether they can be modelled in a computational framework for assessing robustness and resilience of DUTs (and their tipping points) under conditions of volatility and stress. This proposal will conduct a comprehensive review ...

    STTR Phase I 2018 Department of DefenseDefense Advanced Research Projects Agency
  5. Handoff Training for Combat Casualty Care (HTC3) Framework

    SBC: Perceptronics Solutions, Inc.            Topic: DHA17B001

    This proposal is to develop a Handoff Training for Combat Casualty Care (HTC3) Framework.Training is the crux of the handoff problem today. Patient handoffs are a crucial part of casualty care, both in military and civilian environments; and today handoffs are being performed in less than optimal fashion, with ineffective communications accounting for 80% of the handoff errors. Our new HTC3 Framew ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  6. Oxygen Production and Delivery on Demand

    SBC: GLOBAL RESEARCH & DEVELOPMENT INC            Topic: DHA17B005

    This proposal is in response to the Defense Health Agency 2017 Phase I SBIR topic 17B-005.The approach is the use of a membrane oxygen pump using newly developed nano-thickness membranes with all the layers less than 1 micron total.Nanometer thickness membranes enable more oxygen output per surface area at temperatures of 300-600 C than current state-of-the -art 600-800 C membranes that are 50-300 ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  7. AeroQUEST: Aeromedical Quantified Understanding via Experimental Standards Toolkit

    SBC: APTIMA INC            Topic: DHA17C001

    Adverse physiological events (PEs) have plagued warfighters piloting military aircraft, in particular PEs involving hypoxia and cockpit cabin decompression. Though there has been a large variety of research performed in trying to understand the problems and why theyre caused, there are inefficiencies due to the lack of standardized cross-laboratory protocols, procedures, and metrics. To address th ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  8. Brain Targeting Nanoparticle for Drug Delivery in Traumatic Brain Injury

    SBC: WEINBERG MEDICAL PHYSICS, INC.            Topic: DHA18A001

    There is an urgent need to bypass or cross the blood brain barrier (BBB) to deliver drugs for TBI treatment. This project aims to develop targted intranasally delivered, magnetically propulsed, and targted nanoparticles for traumatic brain injury (TBI). In Phase I, we will demonstrate the design, fabrication, and in vitro characterization of proposed drug laden magnetic nanoparticles as well as co ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  9. Low-Cost Diagnostic Platform for Rapid Biochemical Detection

    SBC: TRITON SYSTEMS, INC.            Topic: DHA17B004

    Triton Systems will develop a novel approach to field-based disease and biochemical diagnostics through innovative use of extremely low cost bioanalytical devices.The proposed platform will provide a low cost, portable, and reliable diagnostic test for on-site use in austere and resource-limited environments.The devices will be highly durable, rugged, and easy to use without user-induced variation ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  10. Underwater Blast Injury Monitoring

    SBC: TRITON SYSTEMS, INC.            Topic: DHA17C002

    Triton Systems, Inc. proposes to develop a piezo-textile that can capture underwater explosion pressure wave patterns to ultimately establish and monitor for injury risk severity. We propose to use a state-of-the-art piezo-textile to which we will apply our own proprietary treatments.We will assess our textiles pressure detection performance and durability against a non-textile piezoelectric array ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government