You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: ARCTOS Technology Solutions, LLC            Topic: DLA18A001

    Universal Technology Corporation (UTC) has teamed with the University of Dayton Research Institute (UDRI), Stratonics, and Macy Consulting to demonstrate not only the transitionability into commercial systems, but also to develop the data analytics and monitoring and control requirements to extract the full value fromseveral sensors, including the Stratonics ThermaViz, acoustic and profilometry se ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
  2. Virus-Like Particle Based pan-Marburgvirus Vaccine

    SBC: Luna Innovations Incorporated            Topic: CBD18A002

    Marburg virus (MARV) is a filamentous enveloped non-segmented negative sense RNA virus. This viruse is considered to be extremelydangerous with case fatality rates as high as 88-90%. Extensive efforts have gone towards effective vaccines for MARV prevention, however,none have been successfully established as licensed vaccines. Glycoprotein (GP) is the only surface protein of MARV. There are substa ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  3. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: Senvol LLC            Topic: DLA18A001

    The Department of Defense (DoD) has a demand for out-of-production parts to maintain mission readiness of various weapons platforms. Additive manufacturing (AM) is an exciting and promising manufacturing technique that can make out-of-production parts and holds the potential to solve supply chain issues, such as high costs (i.e. for low-volume parts) and sole sourcing risks. The ability of AM to s ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
  4. Smart Baseplate for Additive Manufacturing

    SBC: Luna Innovations Incorporated            Topic: DLA18A001

    Additive manufacturing (AM) has rapidly evolved into a valuable technique for making parts which, at times, cannot be fabricated through conventional machining methods.One challenge in the area of AM is the lack of real-time feedback on the fabrication process and the quality of the part being made.This is especially critical given the relatively long periods of time that complex parts can require ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
  5. Functionalized, Therapeutic-Loaded Liposomes for the Acute Treatment of TBI

    SBC: Luna Innovations Incorporated            Topic: DHA18A001

    Traumatic brain injury is a common problem in both the military and civilian communities, but current treatment protocols are focused on managing symptoms and fail to prevent significant long-term repercussions. In the proposed program, Luna will demonstrate the feasibility of a liposome-based therapeutic delivery system capable of delivering hydrophilic and hydrophobic therapeutics to the traumat ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  6. Advanced Rocket Trajectory Propagation Techniques

    SBC: RESERVOIR LABS INC            Topic: MDA17T002

    Reservoir Labs and Johns Hopkins University will develop alternative numerical solution techniques that improve computational loading, data storage, and data integrity for rocket vehicle trajectory modeling in MDA federated simulations.The objective of this program is to develop new techniques for trajectory propagation that are more suited for use in federated simulations than traditional methods ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  7. Test Article Printing with Laser Additive Manufacturing (TAP-LAM) for Threat Surrogate Target Production

    SBC: MV Innovative Technologies LLC (DBA: Opt            Topic: MDA17T001

    Optonicus proposes development of the TAP-LAM (Test Article Printing with Laser Additive Manufacturing for Threat Surrogate Target Production) powder bed fusion and directed energy depositions systems. The TAP-LAM metal additive manufacturing system will advance strategic missile defense system testing capabilities by improving 3D printing methods to rapidly produce large-scale threat surrogate ta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  8. Additive Manufacturing of Metallic Materials for High Strain Rate Applications

    SBC: MRL MATERIALS RESOURCES LLC            Topic: MDA17T001

    Metallic additive manufacturing (AM) is an attractive technology for the production of lethality test articles due to the potential for significantly reduced lead time and manufacturing cost.However, in order to be effective in providing accurate lethality data, the properties of the AM material have to match closely the properties of conventionally manufactured alloys found in real threat targets ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  9. Innovative Methodologies for Manufacturing of Lethality Test Articles

    SBC: Matsys Incorporated            Topic: MDA17T001

    The experimental validation of the DoDs weapon systems is at the cornerstone of national security considerations. The structural requirements for the targets utilized impose a severe cost and lead time burden due to the limitations imposed by the traditional manufacturing processes currently used. Novel manufacturing methods for metal alloys have been established in the past years, but they have y ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  10. Lightweight Magnesium Components of a Missile Body

    SBC: Terves Inc.            Topic: MDA17T004

    Magnesium alloys have 35% lower density compared to aluminum, with improved temperature stability compared to high strength aluminum.They can also be fabricated with minimum gauge thicknesses considerably thinner than fiber composites, and are weldable, with much higher impact resistance.Traditional magnesium alloys, however, have had lower strengths than more developed aluminum alloys.Powder meta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government