You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Advanced Morphing Moulage for Medical Training (AMM-MT)

    SBC: VCOM3D INC            Topic: DHA17A002

    For this Phase I SBIR proposal, Vcom3D proposes to design advanced medical moulage that accurately simulates the progression of an injury or pathology by morphing through a series of clinical states to enable learners to confirm the progression of the wound and to determine whether iatrogenic errors or pathologies occurred duing treatment. The physical morphing moulage may be applied to medical m ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  2. Bio-mathematical Models of Aggregated Tissues & Organ Properties

    SBC: Corvid Innovation LLC            Topic: DHP16A001

    Realistic surgical simulation requires a combination of representative tissue geometry, accurate tissue material properties and lifelike tool-tissue interaction forces. Recent advances in computational power and imaging modalities have provided the capability to represent the anatomical details required for surgical training; however, the mathematical models which govern the underlying tissue pro ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  3. Bio-Mathematical Models of Aggregated Tissues & Organ Properties

    SBC: BIOMOJO LLC            Topic: DHP16A001

    BioMojo LLC and the Departments of Mathematics and Biomedical Engineering at the University of North Carolina Chapel Hill, will develop a preliminary bio mathematical model framework to represent how human tissues interact and behave at their boundaries. Tissue interaction properties (e.g. tensile, shear, friction, and so forth) of connective, epithelial, muscular, and nervous tissue including su ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  4. Cervical Spine Health Improvement Products

    SBC: SWITCHBOX INC            Topic: DHA18B001

    Most standard-of-care tools and techniques for evaluating neck disorders are subjective, unreliable, and do not provide actionable information for providers, payers, and organizations to deliver efficient and effective care. This lack of objective neck he

    STTR Phase I 2019 Department of DefenseDefense Health Agency
  5. Deep Learning based Automated Ultrasonic Vocalizations Scoring: DLAS

    SBC: Intelligent Automation, Inc.            Topic: DHP16C003

    Ultrasonic vocalizations (USVs) provide an excellent behavioral measure that can be used to understand the effects of traumatic stressors on behavior and can be used to screen and identify therapeutic treatments. This provides a strong justification for the use of rodent USVs as a model for emotional processing in PTSD. Since there are no commercially available USV assessment software programs tha ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  6. Dynamic virtual moulage based on thin film adhesive displays

    SBC: ARCHIE MD INC.            Topic: DHA17A002

    Providing Army combat medics with meaningful experience in treatment of battlefield injuries is a particular challenge. Moulage has the potential to assist in acquiring what could otherwise be very hard-to-come-by preparatory experience for the distressing real-life emergencies medics and soldiers may encounter in the field. However, current approaches to moulage are limited in their ability to re ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  7. Electrotextile Systems for Human Signatures Monitoring

    SBC: MANTEL TECHNOLOGIES, INC.            Topic: DHA17A001

    Investments by the Department of Defense (DOD) have led to the development and demonstration of electronic textiles capable of transforming traditional textile systems into wearable power and data systems. The Defense Health Agency (DHA) has identified an opportunity to leverage advancements in smart garment systems for military personnel to aid in the prediction in performance declines and healt ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  8. Enhanced WAAVES+: A Fast and Accurate Automated USV Scoring Program

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: DHP16C003

    Cornerstone Research Group (CRG) and the University of Texas (UT) will team to develop a fast and accurate automated analysis program for USV scoring. This automated tool will enable greater research efficiency and throughput allowing greater strides in developing treatments for post-traumatic stress disorder through rodent-based research. Building off prior work by UT on a first generation auto-s ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  9. In-Mask Sensors for Physiological Investigation of Respiratory Exhalation- INSPIRE

    SBC: MAKEL ENGINEERING, INC.            Topic: DHP16C002

    Makel Engineering, Inc. and Sandia National Laboratories propose to demonstrate an advanced multi-modal sensor system suitable for in-situ analysis of exhaled VOCs for pilots, divers and field patients. Our proposed system will combine a micro-gas chromatograph (GC) and miniature ion mobility spectrometer (IMS) for detection of trace amounts of exhaled breath VOCs with miniature solid state sensor ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  10. Mask integrated Volatile Organic Compound (VOC) sensor for real-time warfighter physiological status monitoring in extreme and toxic environments

    SBC: BAYSPEC, INC.            Topic: DHP16C002

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop an innovative orthogonal sensor systemthat would be able to detect, identify and quantify the inorganic components of breathing mixes, (i.e., nitrogen, oxygen, carbon dioxide, argon, helium, and water vapor), as well as individual detectable VOCs within the exhaled breath in real-time. The Phase I resear ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government