You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Demonstration of a JP-8 Powered Compact ECU

    SBC: MAINSTREAM ENGINEERING CORP            Topic: OSD09T002

    Military shelters currently use electrically driven Environmental Control Units (ECUs) to provide cooling for the air inside the shelter. The ECU is vapor compression cycle powered by a diesel generator, operating on JP-8 fuel. Other than fueling jet engines, the largest drain on U.S. military fuel supplies in current operations comes from running generators at forward operating bases. In hot cli ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Low-Cost Ball/Air/Magnetic Hybrid Bearing System for Extended-Life Micro Gas Turbine Engines

    SBC: Nastec, Inc.            Topic: N10AT037

    A unique type of air lubricated thrust bearing called a Wave Bearing is proposed to assist a rolling element bearing to carry the thrust load and to improve the bearing’s life when used in a micro gas turbine engine. The Wave Bearing technology will provide improved reliability, safety and life compared to rolling element bearings used alone, as well as to allow simplification of engine design a ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Deterministic and Statistical Characterization of the Impact of Control Surface Freeplay on Flutter and Limit-Cycle Oscillation (LCO) using Efficient

    SBC: Advanced Dynamics, Inc.            Topic: N10AT003

    Research is proposed for the development and implementation of state of the art computational and experimental tools for the investigation of the impact of control surface freeplay on the flutter and limit cycle oscillation characteristics of two-dimensional and three-dimensional wings in subsonic and transonic flow. Highly efficient and accurate aeroelastic simulation tools will be constructed ba ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Multiscale Modeling and Analysis of Foreign Object Damage in Ceramic Matrix Composites with the Material Point Method

    SBC: Advanced Dynamics, Inc.            Topic: N10AT010

    This Small Business Technology Transfer Phase I project is aiming at developing and implementing a multiscale composite model to predict the ceramic matrix composite (CMC) response to the impact loading by foreign objects. In particular, the physics-based model will be applied to describe the multiscale foreign object damage (FOD) phenomena of CMCs due to the complex nature of impact dynamics coup ...

    STTR Phase I 2010 Department of DefenseNavy
  5. An adaptive and scalable SOA-based network resource virtualization framework for MANET

    SBC: Intelligent Automation, Inc.            Topic: N10AT006

    The key innovation of this proposal is to develop an adaptive and scalable network resource virtualization framework. The framework employs simple yet efficient mechanisms to deliver a comprehensive network resource virtualization solution through network virtualization, service discovery/advertisement, and service differentiation in mobile ad hoc networks (MANETs). It uses local caching to facili ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Analysis and Modeling of Foreign Object Damage (FOD) in Ceramic Matrix Composites (CMCs)

    SBC: N&R ENGNERING MGT SUPPORT SVCS            Topic: N10AT010

    The Phase I deliverable will be a physic-based model which represents a CMC gas turbine component concomitantly at the material level and the structural level. This model will be probabilistically analyzed to account for the uncertainties in material properties and the uncertainties in the size and impact velocities of possible foreign objects (FOD). A ceramic material must display sufficient capa ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Development of a Computational Method for Prediction of After-Burning Effect

    SBC: BUSA Engineering Consulting            Topic: N10AT002

    This proposal is being submitted in response to the solicitation topic N10A-T002 (Development of a Computational Method for Prediction of After Burning Effect) by BUSA Engineering Consulting (Dr. Jianghui Chao) in collaboration with University of Florida (PI: Prof. S. Balachandar). The overall objective of the proposed effort is to contribute to national defense and security by advancing the state ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Northwest Uld, Inc.            Topic: N10AT001

    Northwest UAV Propulsion Systems proposes using our purpose built heavy fuel engine designed and built in the USA for small unmanned aerial systems in the tier 2 & 3 class. We will be adding a lightweight ceramic material set combined with FEA (Finite Element Analysis) and heavy fuel atomizer (IRAD Project) to create a lightweight engine for a SUAS or STUAS class UAVs. The Ceramic material set is ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Meshfree-Based Fracture Evaluation and Design Tool for Welded Aluminum Ship Structures

    SBC: Advanced Dynamics, Inc.            Topic: N10AT041

    The aluminum alloys have low density, relatively high strength, and high strength-to-weight ratio, which brings some major advantages in marine structure design, fabrication, and operations. However, marine ships are subjected to a complex and severe loading, and the typical failure mode of aluminum under extreme dynamics loading such as wave slamming and high velocity impact is ductile fracture. ...

    STTR Phase I 2010 Department of DefenseNavy
  10. STOCHASTIC MUTISCALE/MULTISTAGE MODELING OF ENGINE DISKS

    SBC: Advanced Dynamics, Inc.            Topic: N10AT028

    Turbine disks are amongst the most critical components in aero- and naval-vessel engines. They operate in a high pressure and temperature environment requiring demanding properties. Nickel-based supperalloys which have high creep and oxidation resistance at high temperatures are widely used as the material of turbine disks. The elevated-temperature strength of this supperalloy and its resistance t ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government