You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. A Biologically Inspired Micro Aerial Vehicle Design and Development

    SBC: Impact Technologies            Topic: AF08T008

    Impact Technologies, in collaboration with the Georgia Institute of Technology, the Rochester Institute of Technology and the Boeing Company, is proposing to complete the development, testing and evaluation of a novel biologically-inspired Micro Air Vehicle (MAV) conceptualized in Phase I and capable of agile and high endurance flight operations in dense and cluttered urban environments. Phase I a ...

    STTR Phase II 2010 Department of DefenseAir Force
  2. Adaptive multi-sensor wide area situational awareness system- MP 85-12

    SBC: Metron, Incorporated            Topic: AF12BT14

    ABSTRACT: Existing machine learning algorithms have difficulty using all available data about a problem. This STTR will develop a new algorithm that can make full use of all available data, whether that data is labeled or not, and even when some data types or data resolutions are not available during operation. BENEFIT: This STTR will develop a novel machine learning algorithm for reasoning abo ...

    STTR Phase I 2013 Department of DefenseAir Force
  3. Adaptive Quantum-Dot Photodetectors with Bias-Tunable Barriers

    SBC: ESENSORS INC.            Topic: AF08BT02

    The proposed research program focuses on design, fabrication, and characterization of quantum-dot infrared photodetectors (QDIPs) which features bias-tunable parameters, including the spectral response, optical gain, and operating time. Wide variations of detector parameters can be realized through the bias-tunable potential barriers surrounding quantum dots. Changes in bias will transform the ba ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Adaptive Quantum-Dot Photodetectors with Bias-Tunable Barriers

    SBC: ESENSORS INC.            Topic: AF08BT02

    Esensors, with SUNY at Buffalo and SUNY at Albany as a subcontractor, will simulate, fabricate, experimentally investigate, evaluate, and deliver aprototype of a new adaptive IR photodetector based on advanced quantum dot (QD) structures. The detector’s operating principle is based on a new concept of the photoelectron lifetime tunable via adjustable potential barriers in QD structures. The phot ...

    STTR Phase II 2010 Department of DefenseAir Force
  5. A High Performance and Cost Effective Ultra High Performance Concrete

    SBC: i2C Solutions, LLC            Topic: AF12BT04

    ABSTRACT: Adversarial installations, such as those housing the means for nuclear weapons production, are increasingly being constructed in heavily fortified locations and often using ultra high performance concrete (UHPC) as the construction material. As such, the U.S. Air Force has considerable interest in further developments of ultra high performance concrete (UHPC) to maintain an advantage o ...

    STTR Phase I 2013 Department of DefenseAir Force
  6. A Multi-Modal State and Measurement Filter for RSO Tracking

    SBC: DECISIVE ANALYTICS CORPORATION            Topic: AF09BT11

    Joint Space Operations Center under the United States Strategic Command employs a worldwide network of 29 sensors, known as the Space Surveillance Network (SSN), to track more than 17,000 man-made objects in Earth orbit with sizes 10 centimeters or larger. Decisive Analytics Corporation and the University of Texas Austin Center for Space Research propose an innovate framework for solving stochast ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. An Immersed Boundary Framework for Topology Optimization of Nonlinear Thermoelastic Structures with Internal Radiation

    SBC: Spectral Energies, LLC            Topic: AF17AT015

    Thermoelastic structures pose a critical challenge to designers due to the inherent design dependence of thermal loading on structural thickness. This is further exacerbated by structural nonlinearity due to in-plane, and more importantly, the out-of-plane bending deformation that further increases the effective loading on the structure. During Phase I of this project, we have added significant ne ...

    STTR Phase II 2018 Department of DefenseAir Force
  8. Anisotropic Property Manipulation of Selective Laser Melted GRCop-84

    SBC: Special Aerospace Services            Topic: AF18AT009

    In partnership with the Colorado School of Mines Alliance for the Development of Additive Processing Technologies and with support from the Johns Hopkins University Energetic Research Group, Special Aerospace Services will provide the Air Force with characterization of fully dense Selective Laser Melted GRCop-84 subjected to a variety of manipulations that affect key performance metrics for regene ...

    STTR Phase I 2018 Department of DefenseAir Force
  9. Application of Hierarchical Memory Models to Automatic Target Recognition Modeling and Simulation

    SBC: Novateur Research Solutions, LLC            Topic: AF18AT014

    This SBIR Phase I project proposes a visual processing system for automated target recognition. Inspired by biological vision systems and hierarchical memory models, the proposed system is capable of learning hierarchical invariant features from unlabeled data that are independent of object labels. The model exploits these learned features to create hierarchical representations of target memories ...

    STTR Phase I 2018 Department of DefenseAir Force
  10. Autonomic Performance Assurance for Multi-Processor Supervisory Control

    SBC: COLORADO ENGINEERING INC.            Topic: OSD11T01

    Multi-processor computing systems are growing in capacity and usage. They encompass multiple, distributed implementations as well as heterogeneous, embedded computing architectures. The processing density enabled by such approaches holds promise for unmanned combat air vehicles (UCAVs) with their plethora of mission sensors and command and control processing requirements. However, the software ...

    STTR Phase II 2013 Department of DefenseAir Force
US Flag An Official Website of the United States Government