You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Framework for Modeling Turbulent Flow with Conjugated Heat Transfer

    SBC: Advanced Cooling Technologies, Inc.            Topic: N19BT027

    With gas turbines becoming smaller and more powerful the need to accurately predict the temperature distribution of the turbine blades become crucial. The high Reynolds number (Re), poorly behave flow encountered in gas turbines makes Reynolds Averaged Navier Stokes (RANS) inaccurate and Direct Numerical Simulations (DNS) too expensive to be used as analysis tools. Large Eddy Simulation (LES) appr ...

    STTR Phase I 2019 Department of DefenseNavy
  2. Power-Dense Electrical Rotating Machines for Propulsion and Power Generation

    SBC: Continuous Solutions LLC            Topic: N19AT007

    The primary objective is to develop electric machine/drive topologies and power architectures that achieve the power densities required for 50% more power without the increase in weight or space requirements. In addition to PMSM-based designs, two new machine topologies will be considered. The first is a trapped flux coreless (TFC) machine that utilizes superconducting pucks made of YBCO to produc ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Homopolar AC Electric Machines for Naval Applications

    SBC: McCoy Consulting, LLC            Topic: N19AT007

    The objective of this proposed effort is to increase the power and torque density of rotating electric machinery for Naval applications by up to 50%. This aggressive goal will be achieved by developing the novel homopolar AC machine (HAM) topology. This relatively un-studied topology relies on solenoidal field and armature coils, making manufacturing simpler than traditional machines. The HAM elim ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Novel Development of an Intelligent Quench Detection (QD) Method for HTS Coils

    SBC: Tai-Yang Research Company            Topic: N19AT016

    Energy to Power Solutions (e2P) has teamed with quench detection (QD) expert Dr. Yuri Lvovsky (retired GE), Dr. Sastry Pamidi of the Center for Advanced Power Systems (FSU-CAPS), and American Superconductor Corporation (AMSC) to design, fabricate, and test a robust, reliable, and low cost QD system. e2P’s proposed system is a vastly different quench avoidance system that will provide multiple le ...

    STTR Phase I 2019 Department of DefenseNavy
  5. Rayleigh Interrogated Optical Fiber (RIOF) Quench Monitoring and Control System for DC and AC Operated High Temperature Superconducting Magnets

    SBC: Lupine Materials and Technology, Inc.            Topic: N19AT016

    High temperature superconducting (HTS) systems, and in particular superconducting magnets (SCMs), developed and deployed by the Department of Defense are necessary to maintain and advance the U.S. naval defense program. Tremendous advantages in utilizing HTS SCM technology have been impeded, however, by the inability to reliably monitor and protect the magnets against the occurrence of a quench. A ...

    STTR Phase I 2019 Department of DefenseNavy
  6. Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers

    SBC: Irglare, LLC            Topic: N19AT004

    The development of a catastrophic optical damage model for quantum cascade lasers describing instantaneous laser damage at high optical power levels is proposed. The model will be validated by comparison to experimental data. Based on obtained results, changes to laser design and laser fabrication resulting in an increased damage threshold will be implemented. The work will ultimately result into ...

    STTR Phase I 2019 Department of DefenseNavy
  7. GECCO: Gecko-gripper for EOD with Cavitation Cleaning Operation

    SBC: ZERO-G HORIZONS TECHNOLOGIES, LLC            Topic: N19AT011

    The objective of the Phase I proposal is to investigate the application of controlled cavitation cleaning technology in conjunction with gecko-inspired mechanical adhesion and soft elastomeric applicators for use in non-intrusive EOD operations. This investigation requires the proof-of-concept testing and validation of a controlled cavitation cleaning mechanism, and a soft robotic gecko-inspired m ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Compact Waste Heat Recovery Power Generation System

    SBC: SPECTRAL ENERGIES LLC            Topic: N19AT013

    The STTR topic N19A-T013 seeks innovative technology to improve the power density and efficiency of propulsion and power generation devices. To address this challenge, Spectral Energies in collaboration with its academic partner Dr. Rory Roberts at Wright State University proposes to develop a compact heat recovery system based on a supercritical CO2 based Rankin Cycle. At the end of the STTR prog ...

    STTR Phase I 2019 Department of DefenseNavy
  9. CUES: Cyber-mediated Usable Emotional Sensors

    SBC: CARLEY TECHNOLOGIES, INC            Topic: N19AT024

    The objective of this project is to assess the feasibility of, and lay the ground work for, creating cyber-mediated usable emotional sensors (CUES) and using them for improved detection and assessment of information maneuvers. CUES will be a robust, reusable, cross-cultural capability for rapidly assessing a group’s emotional climate vis-a-vis a topic using social media posts. CUES will be part ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Innovations in Designing Damage Tolerant Rotorcraft Components by Interface Tailoring

    SBC: HARP ENGINEERING LLC            Topic: N19AT003

    The performance of a composite material is heavily influenced by the strength and toughness of the interlaminar region, which is the resin rich area between the plies of a fiber reinforced composite. The interlaminar region generally provides a direct path for crack propagation since no continuous reinforcement is present and is often the cause of failure in materials subjected to cyclic loading s ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government