You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of Low-Cost Augmented Reality Head Mounted Display

    SBC: SA PHOTONICS, LLC            Topic: N09T031

    SA Photonics, in conjunction with our teammates at the University of Arizona, have developed LARS, the low-cost augmented reality system. This system is a see-through HMD used for training and simulation. LARS was designed using an innovative freeform prism combiner which is small, lightweight and has very little obscuration of the outside world. We have partnered with Rockwell Collins Optronics ( ...

    STTR Phase II 2010 Department of DefenseNavy
  2. Planar, High Frequency, Power Conversion Device Technology

    SBC: TRANSPHORM, INC.            Topic: N09T023

    Transphorm proposes to demonstrate a normally off fast high voltage Gallium Nitride power switch solution. The switch would block to 1200V, have a threshold voltage greater than 5 V, and the phase 2 switch will target an on resistance less than 15 ohm-mm and current more than 1 Amp. To accomplish these targets, Transphorm will combine the design requirements of realizing a high (and positive) thre ...

    STTR Phase II 2010 Department of DefenseNavy
  3. Electro Optic Avionic Advanced Guidance, Navigation and Control (GNC) Algorithm Development to Enhance the Lethality of Interceptors Against Maneuveri

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: MDA08T003

    This Phase II effort will further develop a technique to improve current seeker discrimination and tracking capabilities using a unique particle filter algorithm (PFA) approach. The advancement represents a significant upgrade to current and future seekers facing advanced threats in stressing environments. Quantifiable improvements over many facets of the current approach have been realized during ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  4. Exact modeling of targets in littoral environments

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N09T026

    The US Navy needs the capability to model acoustic propagation in complex ocean environments containing natural or man-made objects. Such accurate modeling requires the solution of the wave equation in the ocean containing scatterers. In the absence of the scatterer, the oceanic waveguide can be assumed to be axially symmetric. This allows certain types of physically valid approximations to be mad ...

    STTR Phase II 2010 Department of DefenseNavy
  5. Linking Output Activity to Outcomes/Impacts in Complex Contingency Environments

    SBC: Frontier Technology Inc.            Topic: OSD08T003

    As the U.S. Government increases participation in post-conflict Stabilization and Reconstruction Operations (SARO) around the globe, the ability to understand the relationships between task completion and mission completion is critical. The US Government employs a metrics tool developed though the Monitoring Progress in Conflict Environments project. The objective of this Phase II STTR is to provi ...

    STTR Phase II 2010 Department of DefenseArmy
  6. Advanced Interceptor Infra-Red Search and Track System (IRSTS) for Missile Defense Applications

    SBC: OCEANIT LABORATORIES INC            Topic: MDA08T002

    The Oceanit¡¦s/APL Foveal InfraRed Search and Track (FIRST) prototype is a dual channel cryogenic WFOV optical sensor system. FIRST provides multifaceted support for an airborne IR search and track and uses the unique Multi-target-tracking Optical Sensor-array Technology (MOST) sensor chip, which has been developed at MDA. FIRST supports instantaneous field-of-view up to 90 degrees, with 360 deg ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  7. High Sensitivity Light-Weight Gyroscope

    SBC: Los Gatos Research            Topic: MDA08T005

    Gyroscopes are found in nearly every airplane, many cars, robots, missiles, and more. The reason for such broad, wide-spread use is simple: gyroscopes are excellent tools for determining rotation, and can be quite sensitive. Improving the sensitivity of optical gyroscopes while also reducing their size and weight has proven to be a significant challenge. To provide a solution, Los Gatos Researc ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  8. Lithium-Ion Cell and Battery Life Modeling to Encompass Wider Life Parameters

    SBC: Quallion LLC            Topic: MDA08T008

    Quallion and the University of South Carolina propose to continue their modeling efforts to develop a more comprehensive LEO simulation model to encompass more varied satellite conditions to meet USG (United States Government) modeling needs.

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  9. Scalable technology for growth of high quality single crystal gallium nitride

    SBC: Soraa            Topic: AF08BT20

    We propose to demonstrate and advance several key aspects of our novel, scalable ammonothermal technology for growth of high quality single crystal gallium nitride. Specifically, we propose to demonstrate a high growth rate and high crystalline quality, to design and analyze a pilot-scale reactor, and to construct and validate a quantitative model to describe the fluid dynamics of the growth envi ...

    STTR Phase II 2010 Department of DefenseAir Force
  10. Development of Multi-Frequency Multi-Scale Radiation Transport Modeling

    SBC: Prism Computational Sciences, Inc.            Topic: AF08T020

    The objective of this proposal is to develop advanced radiation transport modeling techniques that accurately and efficiently treat transport in media having widely varying optical properties; in particular, hot gases and plasmas with optical depths ranging from the optically thin to the optically thick regimes. We will develop a hybrid diffusion-Monte Carlo (HDMC) model that efficiently transpor ...

    STTR Phase II 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government