You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Microelectronics Component Adhesive Selection and Design Rules for Failure Avoidance

    SBC: CFD RESEARCH CORPORATION            Topic: MDA14T002

    Thermally induced fatigue and residual stress introduced during fabrication are sources of stress related failure in microelectronics, which raises concerns about product reliability and specification. CFDRC has teamed with experts in the reliability of microelectronics packaging to develop a testing and physics based modeling protocol to correlate material properties and thermal loading conditio ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  2. Measurement and Modeling of Surface Coking in Fuel-Film Cooled Liquid Rocket Engines

    SBC: CFD RESEARCH CORPORATION            Topic: AF15AT21

    ABSTRACT: Designing an efficient and effective film cooling system to protect critical components of modern rocket engines requires a significant number of challenges to be addressed. Complicating the already difficult hydrodynamic challenges, thermal cracking of hydrocarbon fuels is always accompanied by coke formation. The coke deposits on the combustor and nozzle walls reduces heat fluxes and c ...

    STTR Phase I 2015 Department of DefenseAir Force
  3. Rapid Development of Thermodynamic Capability for Integrated Computational Materials Engineering

    SBC: Computherm, LLC            Topic: AF15AT30

    ABSTRACT: CompuTherm, LLC proposes a pilot project to develop an innovative modeling tool for rapid deployment of thermodynamic capability for Integrated Computational Materials Engineering (ICME). To be developed on the basis of CompuTherms current capability, Pandat software, the proposed modeling tool represents the next generation of CALPHAD software. The significant advances of the proposed m ...

    STTR Phase I 2015 Department of DefenseAir Force
  4. High Speed Electronic Device Simulator

    SBC: CFD RESEARCH CORPORATION            Topic: AF15AT33

    ABSTRACT: This project will develop and demonstrate a software package based on coupled Fokker-Planck (FP) - Fermi Kinetic Transport (FKT) models and full-wave Maxwell electromagnetic (EM) solver to accurately predict semiconductor device behavior from dc up through the mm-wave and THz frequency ranges. The FP model provides accurate non-equilibrium occupation functions for hot electrons with real ...

    STTR Phase I 2015 Department of DefenseAir Force
  5. Impact of Hypersonic Flight Environment on Electro-Optic/Infrared (EO/IR) Sensors

    SBC: Analysis and Applications Associates, Inc.            Topic: AF15AT40

    ABSTRACT: Analysis and Applications and Associates, Inc. (AAA) proposes to develop software that evaluates effects of the hypersonic flow environment on electro-optic/infrared optical systems and vehicles for specific hypersonic flight profiles. We propose a high fidelity definition of the near-field flow, using the latest CFD and turbulence modeling technologies, to determine the environment from ...

    STTR Phase I 2015 Department of DefenseAir Force
  6. Micro-Particle Debris Characterization from Hyper-Velocity Impacts

    SBC: Torch Technologies, Inc.            Topic: MDA13T002

    Leveraging the results of our Phase I work, the Torch Team proposes to execute laboratory-based experiments to elucidate fundamental micro-debris formation mechanisms to improve optical modeling of impacts. Optical signatures from impacts collected over the last decade have identified definitive micro-debris parameter trends. However, current theories have difficulty reproducing these optical ob ...

    STTR Phase II 2015 Department of DefenseMissile Defense Agency
  7. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is critical to detect the proliferation of nuclear material. Critical challenges facing this objective include: (a) high sensitivity detection of signature emissions (e.g., gamma rays) from common radioactive isotopes behind shielding, and (b) cost-effe ...

    STTR Phase I 2015 Department of DefenseDefense Threat Reduction Agency
  8. Surface-Emitting, Monolithic Beam-Combined Mid-Wave IR Quantum Cascade Lasers

    SBC: INTRABAND, LLC            Topic: N13AT006

    The technical objectives of this proposal are: (1) demonstrate a 4.6 micron-emitting grating-coupled surface-emitting (GCSE) quantum cascade laser (QCL) designed for incorporation in an Active-Photonic-Crystal (APC) structure; (2) demonstrate a high-index-contrast APC-QCL edge-emitting structure, designed for incorporation of gratings; (3) demonstrate a GCSE-APC-QCL structure; (4) Develop monolith ...

    STTR Phase II 2015 Department of DefenseNavy
  9. High-Power, Monolithic THz Sources via Difference Frequency Generation in Phase-Locked Arrays of Quantum Cascade Lasers

    SBC: INTRABAND, LLC            Topic: A15AT003

    The technical objectives of this proposal are: 1) the design of high-index-contrast (HC) photonic-crystal (PC) THz, difference-frequency-generation (DFG) quantum cascade lasers (QCLs) with midinfrared pumps at 8 micron and 9 micron wavelengths; 2) design and demonstrate operation of a 4 THz DFG-QCL with the midinfrared pumps operating at 8 and 9 microns; and 3) Theoretically demonstrate the feasib ...

    STTR Phase I 2015 Department of DefenseArmy
  10. Terahertz Nano-Radio Platform with Integrated Antenna and Power source

    SBC: Digital Analog Integration, Inc.            Topic: A15AT005

    There is an unmet demand for nano-scaled ultra-low-power low-cost radios to address field-deployable and massively producible sensing and communication networks in future military and commercial applications. To overcome the limitations in existing bulky and power hungry radios, we propose a disruptive solution by exploiting the holistic integration of THz radio transceiver system, on-chip antenna ...

    STTR Phase I 2015 Department of DefenseArmy
US Flag An Official Website of the United States Government