You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Handoff Training for Combat Casualty Care (HTC3) Framework

    SBC: Perceptronics Solutions, Inc.            Topic: DHA17B001

    This proposal is to develop a Handoff Training for Combat Casualty Care (HTC3) Framework.Training is the crux of the handoff problem today. Patient handoffs are a crucial part of casualty care, both in military and civilian environments; and today handoffs are being performed in less than optimal fashion, with ineffective communications accounting for 80% of the handoff errors. Our new HTC3 Framew ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  2. Flexible and Efficient Cooling System

    SBC: BASCOM HUNTER TECHNOLOGIES INC            Topic: N18AT001

    The objective of this program is to develop and demonstrate a flexible and efficient cooling system (FECS) for helicopters and other aircraft. FECS can be used to cool lasers, electronics or other devices in slow or fast-moving aircraft that are operating in high ambient temperatures. It utilizes a modular approach that allows FECS to be quickly and easily modified for various payloads. There are ...

    STTR Phase I 2018 Department of DefenseNavy
  3. Next-Generation, Power-Electronics Materials for Naval Aviation Applications

    SBC: SIXPOINT MATERIALS, INC.            Topic: N18AT004

    This STTR project develops an innovative seed fabrication technology to address the fundamental size-quality limitation of gallium nitride (GaN) substratesthe indispensable key component for GaN-based vertical high-power devices. Currently, there is no viable GaN technology to realize large-area and low-defect substrates simultaneously. The technology producing 6" and larger GaN wafers results in ...

    STTR Phase I 2018 Department of DefenseNavy
  4. Low-cost production of ultra-low defect GaN-based power electronics

    SBC: QRONA TECHNOLOGIES LLC            Topic: N18AT004

    GaN power semiconductors offer a technological breakthrough for improving the performance of power electronics including power density, conversion efficiency, and reliability of power converters. These are the three most critical requirements for military, aerospace and many commercial applications. In this STTR program, Qrona Technologies will collaborate with the University of Central Florida to ...

    STTR Phase I 2018 Department of DefenseNavy
  5. Hot Filament CVD technology for disruptive, high-throughput SiC epitaxial growth reactors

    SBC: TRUENANO, INC.            Topic: N18AT004

    TrueNano, Inc. will in collaboration with the University of Colorado and industry partners, develop a novel single-wafer, high-throughput hot filament CDV reactor for the growth of high quality silicon carbide (SiC) epitaxial layers, suitable for the next generation of power electronic devices and systems. This includes the design and simulation of the reactor, the development of a throughput mode ...

    STTR Phase I 2018 Department of DefenseNavy
  6. Concrete Materials Characterization (COMAC)

    SBC: Luminit LLC            Topic: N18AT006

    To meet the U.S. Navy, specifically PMA-201, need for nondestructive evaluation (NDE) of concrete, including evaluating its strength, material properties, and damage localization, Luminit, LLC, and Southern Illinois University (SIU) propose to develop a novel Concrete Materials Characterization (COMAC) system, combining several methods of concrete characterization into a single sensor/software com ...

    STTR Phase I 2018 Department of DefenseNavy
  7. Non-Destructive Concrete Interrogator and Strength of Materials Correlator

    SBC: KARAGOZIAN & CASE, INC.            Topic: N18AT006

    Karagozian & Case Inc. and the University of Nebraska-Lincoln Department of Civil Engineering are proposing a Phase I STTR to develop a non-invasive and non-destructive methodology capable of measuring concrete material properties, including relevant spatial and statistical information associated with them, for input to hydrocode models. The solution will be both laboratory and field deployable, w ...

    STTR Phase I 2018 Department of DefenseNavy
  8. Protocol Feature Identification and Removal

    SBC: P & J ROBINSON CORP            Topic: N18AT018

    Protocols used for communication suffer bloat from a variety of sources, such as support for legacy features or rarely used (and unnecessary) functionality. Traditionally, the Navy subscribes to a blanket adoption of a standard protocol "as is". Unnecessary features are active and can be accessed by both internal and external systems creating security vulnerabilities. PJR Corporation's (PJR's) Pha ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Active Imaging through Fog

    SBC: SA PHOTONICS, LLC            Topic: N18AT021

    Active imaging systems are used to for imaging in degraded visual environments like that found in marine fog and other environments with a high level of attenuation and scattering from obscurants like fog, rain, smoke, and dust.These systems are still limited in range and resolution. SA Photonics is taking advantage of multiple image enhancement techniques, like wavelength tunability, pulse contro ...

    STTR Phase I 2018 Department of DefenseNavy
  10. Operational Sand and Particulate Sensor System for Aircraft Gas Turbine Engines

    SBC: HAL Technology, LLC            Topic: N18AT023

    Gas turbine engines with prolonged exposure to sand and dust are susceptible to component and performance degradation and ultimately engine failure. Hal Technology’s proprietary, compact, rugged, flush-mounted, fiber-optic sensor platform measures particulate size, size distributions, and concentration for real-time engine health monitoring. Our proposed sensor will use an innovative hybrid disc ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government