You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. STTR Phase II:Integrated Powered Knee-Ankle Prosthetic System

    SBC: Ekso Bionics Inc            Topic: EO

    This Small Business Technology Transfer (STTR) Phase II project proposes the development of an integrated powered knee-ankle prosthesis. The objective of this proposal is to investigate the use of integrated powered knee and ankle joints in trans-femoral prostheses that use sensory information from the ground and the wearer. The hypothesis is that a prosthesis with actively powered knee and ankle ...

    STTR Phase II 2010 National Science Foundation
  2. STTR Phase I:Structural properties of carbon nanotube polymer composites

    SBC: BOULDER NONLINEAR SYSTEMS, INC.            Topic: MM

    This Small Business Technology Transfer Phase I project will develop a new system for fabrication and manipulation of carbon nanotube (CNT) composites. The system will use holographic optical trapping (HOT) with a spatial light modulator (SLM) and a new form of nano-controlled photo-polymerization. This tool will allow the creation of a new class of carbon-nanotube polymer composite materials wit ...

    STTR Phase I 2010 National Science Foundation
  3. STTR Phase I: New Manufacturing Techniques to Produce High Quality Thin Films of Inherently Conducting Polymer Nanofibers Over a Large Area

    SBC: Fibron Inc.            Topic: MM

    This Small Business Technology Transfer (STTR) Phase I project aims to develop a manufacturing process that can coat a variety of substrates with uniform thin films of inherently conducting polymer (ICP) nanofibers over a large area. Traditionally, these nanostructured organic materials are difficult to process into thin films covering a large area, which has limited the commercial applicability ...

    STTR Phase I 2010 National Science Foundation
  4. Exploiting the Mating Phenotype of Chlamydomonas reinhardtii to Enhance Harvesting in Large-Scale Oil Production from Algae

    SBC: KENT SEATECH CORPORATION            Topic: A10

    This STTR Phase I project proposes to develop and establish a novel clumping (flocculation) strain of algal using an engineered extracellar protein that can be induced. The overarching goal is to provide the industry with a novel, energy efficient, and cost effective tool to dewater microalgae. What are the broader/commercial impacts of the proposed project? The broader/commercial impact of the p ...

    STTR Phase I 2010 National Science Foundation
  5. STTR Phase I: Design, Fabrication and Characterization of Ferroelectric Nanoparticle Doped Liquid Crystal/Polymer Composites

    SBC: MEADOWLARK OPTICS, INC.            Topic: MM

    This Small Business Technology Transfer Phase I project will address the critical need for low driving voltage, adaptive materials providing large phase retardation (for ultraviolet, visible, and infrared wavelengths) within a sub-millisecond time frame. Two technologically innovative tasks will be pursued in parallel and then merged, resulting in the creation of a new class of optical materials - ...

    STTR Phase I 2010 National Science Foundation
  6. STTR Phase I: Advanced Uncooled Infrared Detectors at the Nano-Scale

    SBC: KYTARO, INC.            Topic: MM

    This Small Business Technology Transfer Phase I project aims to develop highly sensitive and inexpensive uncooled microbolometers using ultra-thin films of metals, metal oxides, or semi-metals. These microbolometers will be attractive for use in portable night vision devices and other thermal imaging applications that require a Noise Equivalent Temperature Difference (NETD) of less than 20 mK. We ...

    STTR Phase I 2010 National Science Foundation
  7. STTR Phase II:Havesting Hydrokinetic Energy Using Vortex Induced Vibration and Fish Biomimetics

    SBC: VORTEX HYDRO ENERGY LLC            Topic: EO

    This Small Business Technology Transfer (STTR) Phase II project will advance the development and prototype testing necessary to transition an innovative large scale generating system from concept to commercialization. The underwater energy generation system is based on the naturally occurring phenomenon of vortex induced vibration (VIV). This device harvests hydrokinetic energy via a system of cyl ...

    STTR Phase II 2010 National Science Foundation
  8. STTR Phase I: Piezoresistive Nanocomposite Elastomer

    SBC: NanoComposites Inc.            Topic: MM

    This Small Business Technology Transfer Phase I project seeks to develop a flexible, pressure-sensitive membrane comprising chemically functionalized multiwalled carbon nanotubes (f-MWCNTs) to address several issues that hamper the use of existing piezoresistive membrane materials: a) interfacial integrity, b) fatigue life related to the number of pressure application cycles, and c) cost effective ...

    STTR Phase I 2010 National Science Foundation
  9. STTR Phase I: Low Cost, High Efficiency Photovoltaics

    SBC: Ampulse Corporation            Topic: MM

    This Small Business Technology Transfer (STTR) Phase I project aims to develop roll-to-roll processing of highly efficient, thin film photovoltaics on inexpensive polycrystalline substrates. The innovation lies in an architecture that yields near-single-crystalline thin films even on polycrystalline substrates. This innovation will be combined with the benefits of hot wire chemical vapor deposit ...

    STTR Phase I 2010 National Science Foundation
  10. Efficient plasma synthesis of high-quality graphene

    SBC: APS LLC            Topic: NM

    This Small Business Technology Transfer (STTR) Phase I project aims to develop a highly-efficient and cost-effective plasma-based method for graphene mass production. The approach is to utilize unique properties of magnetically controlled arc discharge to couple the plasma production of carbon species and the synthesis of graphene. The broader/commercial impact of this project will be the potenti ...

    STTR Phase I 2010 National Science Foundation
US Flag An Official Website of the United States Government