You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Joint User-centered Planning artificial Intelligence Tools for Effective mission Reasoning (JUPITER)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N19BT029

    Effective mission planning is critical for military strategy and execution. This process is complex as human operators must consider many variables (e.g., resource limitations, threats, risks) when formulating a plan to accomplish mission goals. Although powerful tools, such as the Navy’s Joint Mission Planning System (JMPS), provide advanced functionality, mission planning remains a hybrid acti ...

    STTR Phase I 2019 Department of DefenseNavy
  2. Robust, Low Permeability, Water-Filled Microcapsules

    SBC: TRITON SYSTEMS, INC.            Topic: N19BT030

    Triton Systems proposes to develop a process to synthesize water filled microcapsules that are able to contain the water in the microcapsules for extended (years) periods of time. We will develop accelerated aging tests to measure the water loss over the equivalent of 20 years of more. We will also measure the mechanical strength of the microcapsules before and during exposure to jet fuel, and whe ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Power Electronics Thermal Interface (PETI) with Conductive Diamond Plating

    SBC: GLOBAL CIRCUIT INNOVATIONS INC            Topic: AF19BT001

    A growing number of electronic applications within the Air Force, such as devices for power conditioning and distribution, RF power amplification, and high power lasers have been identified for increased heat transfer requirements to maintain operational temperatures at acceptable levels while increasing the performance through higher power. However, this same target research that requires increas ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Next Generation Satellite Communications

    SBC: Blue Cubed, LLC            Topic: AF19BT001

    Small Satellites are a rapidly growing technology and of great interest to both commercial and DOD customers. With the increased access to space and the maturation of small satellites, the mission capabilities have expanded significantly. Along with these expanded capabilities are a need for new approaches to satellite communications with increased capabilities. Blue Cubed is working on developing ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Open Call for Science and Technology Created by Early-Stage (e.g. University) Teams

    SBC: OmniScience LLC            Topic: AF19BT001

    This proposed Phase I STTR effort will be a collaboration between OmniScience LLC and the University of Colorado Colorado Springs (UCCS) Vision and Security Technology (VAST) Lab. The primary objective of this Phase I effort is to demonstrate feasibility of a brain computer interface (BCI) controller for augmented/virtual reality (AR/VR) and conventional screen displays, referred to herein as an A ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. Atomic Triaxial Magnetometer

    SBC: VESCENT PHOTONICS LLC            Topic: N19AT006

    Vescent Photonics and MIT Lincoln Labs (MIT-LL) propose to develop a quantum-based vector magnetometer with low size, weight, power, and cost (SWaP+C) for Navy applications. The proposed system will rely on probing magnetically-sensitive, atomic-like transitions of nitrogen-vacancy (NV) centers in diamond to provide stable, high-bandwidth readout of the vector magnetic field with sub-picotesla sen ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Optimized Higher Power Microwave Sources

    SBC: METAMAGNETICS INC            Topic: N19AT001

    HPM (high power microwave) weapons could disable vehicles, enable vehicle recovery, and reduce collateral damage. Metamagnetics, in partnership with Professor Jane Lehr (University of New Mexico), and General Atomics propose a completely solid-state HPM system based on their work in Gyromagnetic Nonlinear Transmission Lines (gNLTL) and compact High-Gain Slotted Waveguide Antennas. The system will ...

    STTR Phase I 2019 Department of DefenseNavy
  8. TOPMAST II- Repurposing Computational Analyses of Tactics for Training Assessments

    SBC: APTIMA INC            Topic: N18AT003

    As the complexity of threats and emerging warfare capabilities increase, so do the number of Tactics, Techniques, and Procedures (TTPs) and the corresponding training regimes. Instructors are increasingly in need of automated tools to enable training that scales with complexity. Aptima, Inc., and our partners, Aviation Systems Engineering Company, Inc. (ASEC) and the University of Southern Califor ...

    STTR Phase II 2019 Department of DefenseNavy
  9. 3-Band Picosecond High Energy Compact Laser System

    SBC: Q-PEAK INCORPORATED            Topic: N19AT009

    The Navy seeks technology that is oriented toward a deeper experimental and theoretical understanding of marine turbulence and laser light propagation in the marine boundary. Current measurement techniques, such as Doppler Velocimetry (LDV) technique, are limited to resolutions of 0.5 meters or greater and fall short of the required millimeter level resolution. A new type of spectral imaging modal ...

    STTR Phase I 2019 Department of DefenseNavy
  10. Compressive Spectral Video in the LWIR

    SBC: PHYSICAL SCIENCES INC.            Topic: A13AT015

    Physical Sciences, Inc. and Colorado State University will advance the technical maturity of the Compressive Sensing Hyperspectral Imager (CS-HSI) platform. The CS-HSI operates in the longwave infrared (LWIR) spectral range with a single-pixel architecture for low-cost, standoff wide area Early Warning of chemical vapor plumes. The motivation for applying CS to LWIR HSI is to eliminate the high-co ...

    STTR Phase II 2019 Department of DefenseArmy
US Flag An Official Website of the United States Government