You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Meshfree-Based Fracture Evaluation and Design Tool for Welded Aluminum Ship Structures

    SBC: Advanced Dynamics, Inc.            Topic: N10AT041

    The aluminum alloys have low density, relatively high strength, and high strength-to-weight ratio, which brings some major advantages in marine structure design, fabrication, and operations. However, marine ships are subjected to a complex and severe loading, and the typical failure mode of aluminum under extreme dynamics loading such as wave slamming and high velocity impact is ductile fracture. ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Deterministic and Statistical Characterization of the Impact of Control Surface Freeplay on Flutter and Limit-Cycle Oscillation (LCO) using Efficient

    SBC: Advanced Dynamics, Inc.            Topic: N10AT003

    Research is proposed for the development and implementation of state of the art computational and experimental tools for the investigation of the impact of control surface freeplay on the flutter and limit cycle oscillation characteristics of two-dimensional and three-dimensional wings in subsonic and transonic flow. Highly efficient and accurate aeroelastic simulation tools will be constructed ba ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Multiscale Modeling and Analysis of Foreign Object Damage in Ceramic Matrix Composites with the Material Point Method

    SBC: Advanced Dynamics, Inc.            Topic: N10AT010

    This Small Business Technology Transfer Phase I project is aiming at developing and implementing a multiscale composite model to predict the ceramic matrix composite (CMC) response to the impact loading by foreign objects. In particular, the physics-based model will be applied to describe the multiscale foreign object damage (FOD) phenomena of CMCs due to the complex nature of impact dynamics coup ...

    STTR Phase I 2010 Department of DefenseNavy
  4. STOCHASTIC MUTISCALE/MULTISTAGE MODELING OF ENGINE DISKS

    SBC: Advanced Dynamics, Inc.            Topic: N10AT028

    Turbine disks are amongst the most critical components in aero- and naval-vessel engines. They operate in a high pressure and temperature environment requiring demanding properties. Nickel-based supperalloys which have high creep and oxidation resistance at high temperatures are widely used as the material of turbine disks. The elevated-temperature strength of this supperalloy and its resistance t ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Developing a Detailed Chemical Kinetic Model for C-SiC-SiO2-Rubber Composite Materials Exposed to High Temperature, High Pressure, Oxidizing Environme

    SBC: AERODYNE RESEARCH INC            Topic: N10AT005

    The objective of this proposed Small Business Technology Transfer (STTR) effort is to develop an experimentally-validated, highly detailed chemical kinetic reference model of surface chemistry for C-SiC-SiO2 rubber composite materials exposed to high temperature, high pressure, oxidizing environments. This reference model will then be reduced into simplified reduced-order models that could be easi ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Characterizing JP-10 High Temperature Decomposition Chemistry using RMG- An Automatic Reaction Mechanism Generator

    SBC: AERODYNE RESEARCH INC            Topic: N09T011

    Aerodyne Research, Inc. (ARI) and MIT are collaborating to extend their successful Phase I effort to fully develop and validate a comprehensive JP-10 combustion mechanism, using a novel automatic reaction mechanism generation tool (RMG) developed at MIT. JP-10 is a very attractive, but complex fuel whose combustion chemistry is poorly understood. In Phase I, the ARI/MIT team successfully developed ...

    STTR Phase II 2010 Department of DefenseNavy
  7. Tunable High Pulsed Energy Blue Fiber Laser

    SBC: AGILTRON, INC.            Topic: N09T006

    Leveraging on our extensive production experience in fiber optical components and fiber lasers, AGILTRON proposes to realize a new high pulse energy tunable blue laser with doped ZBLAN fiber. Based on enhanced blue upconversion by properly selected co-dopant materials, the proposed blue fiber laser will be able to generate high power. Furthermore, using beam combing technology, we will combine mul ...

    STTR Phase II 2010 Department of DefenseNavy
  8. Validation and Evaluation of Remote, Interactive Teams of Autonomous Systems (VERITAS)

    SBC: APTIMA INC            Topic: OSD09T004

    different modes, while using different combinations of subsystems. This presents a challenge for the personnel validating the system during design and development; the number of combinations of environments, modes, and subsystems is exponential. They cannot all be tested, so an optimal subset of tests must be run. We propose to develop VERITAS: Validation and Evaluation of Remote, Interactive Tea ...

    STTR Phase I 2010 Department of DefenseNavy
  9. INTUITIVE NAVIGATION SYSTEM FOR EFFECTIVE COLLISION-AVOIDANCE TACTICS (INSECT)

    SBC: APTIMA INC            Topic: N08T005

    Vertical short takeoff and landing (VSTOL) operators face numerous challenges, particularly during takeoff, hover, and landing operations. Threats take the form of power lines, structures, and—in the case of combat—enemy fire. Often, these threats are obscured when visibility is compromised by dust, sand, or snow. Maintaining awareness of the surrounding environment becomes almost impossible. ...

    STTR Phase II 2010 Department of DefenseNavy
  10. Optimized Real-time Complex Information Display (ORCID) Phase II Proposal

    SBC: APTIMA INC            Topic: N08T004

    Advances in modeling and simulation, networking, and computer graphics technology have made it possible to conduct large-scale, distributed live, virtual, and constructive (LVC) training events, such as the Navy’s Fleet Synthetic Training (FST) exercises, on a regular basis. However, FST exercises are not without room for improvement. Instructors and exercise controllers often confront difficult ...

    STTR Phase II 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government