You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Small Team Command, Control, Communications and Situational Awareness (C3SA), SOCOM08-001

    SBC: CEEBUS TECHNOLOGIES, LLC            Topic: SOCOM08001

    SOF combat swimmers have a need for the continuous monitoring of each others relative position while diving and for the capability of being able to communicate with each other to help establish a common operational picture (COP).The C3SA system was previously developed under SBIR Topic SOCOM08-001 thru the receipt of both Phase I and Phase II SBIR awards.The C3SA established a stand-alone network ...

    STTR Phase II 2018 Department of DefenseSpecial Operations Command
  2. Hybrid Tempertaure Heterogeneous Technology Energy-Efficient Digital Data Link

    SBC: HYPRES, INC.            Topic: N11AT022

    HYPRES, in collaboration with University of Massachusetts, proposes an energy-efficient hybrid-temperature-heterogeneous-technology (HTHT) digital data link for interfacing 4K superconductor electronics with room-temperature electronics. Comprising several stages of cryogenic SiGe amplifiers at different temperatures, followed by equalization techniques, this data link will be designed to minimize ...

    STTR Phase II 2013 Department of DefenseNavy
  3. Fully Encapsulating Dielectrics for Gaseous Helium Cooled Superconducting Power Cables

    SBC: Advanced Conductor Technologies LLC            Topic: N16AT011

    The proposed program will develop dielectrics for dc superconducting power transmission cables that are cooled with cryogenic helium gas. The Dielectrics will be sealed again helium gas penetration and allow for an operating voltage of 12 kV in a pressure of 2 MPa at 50 K. The dielectrics will be designed for use with all helium facing components of power transmission systems based on CORC cables. ...

    STTR Phase II 2018 Department of DefenseNavy
  4. Energy Efficient, Non-Silicon Digital Signal Processing (DSP)

    SBC: HYPRES, INC.            Topic: N17AT027

    Superconductor digital circuits, operating at very high clock speed, can directly process wideband digitized radio frequency (RF) signals. By integrating such digital processing circuitry together with superconductor analog-to-digital converters (ADCs), we propose to develop the next generation digital-RF receivers. Leveraging the recent development of multiple superconductor ADCs on the same chip ...

    STTR Phase II 2018 Department of DefenseNavy
  5. Innovative Mitigation of Radiation Effects in Advanced Technology Nodes

    SBC: MICROELECTRONICS RESEARCH DEVELOPMENT CORPORATION            Topic: DTRA16A003

    Micro-RDC has developed portable radiation effects test structures that scale to new process nodes.These structures will enable the investigation of the effects of radiation on the new technology from the material processing level as well as the circuit level.Fabricating the chosen structures and the refinement of software to extract the model parameters will be completed in this effort.A suite of ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  6. Epitaxial Technologies for Gallium Oxide Ultra High Voltage Power Electronics

    SBC: Agnitron Technology            Topic: N16AT023

    xß-Ga2O3 has emerged as a potentially disruptive semiconductor with a predicted breakdown field of ~8 MV/cm which is more than twice the breakdown field for the incumbent wide bandgap semiconductors GaN and SiC. The availability of ß-Ga2O3 bulk substrates sets this material apart from other wide bandgap materials for power electronic applications. However, the challenge is to find suitable epita ...

    STTR Phase II 2018 Department of DefenseNavy
  7. Medium Voltage Direct Current (MVDC) Fault Detection, Localization, and Isolation

    SBC: ISSAC Corp            Topic: N16AT009

    During the Phase II effort, the ISSAC Team will investigate several objectives and questions posed in Phase I efforts, in order to best develop a draft specification for NGES MVDC DLI systems. This includes exploring notional and conceptual architectures and discerning thresholds for DLI parameters; exploring individual and hybrid protection plan technologies to drive performance requirements for ...

    STTR Phase II 2018 Department of DefenseNavy
  8. Biomechanical Rat Testing Device to Validate Primary Blast Loading Conditions for Mild Traumatic Brain Injury

    SBC: CREARE LLC            Topic: A17AT022

    Blast induced Traumatic Brain Injury (TBI) is a major threat to the health of military personnel serving in modern theaters. As such, the biomechanical injury pathways of TBI are, and have been, the focus of many animal studies. However, differences in the experimental setups across laboratories make it difficult to draw definitive conclusions from the resulting data. A tool that can accurately es ...

    STTR Phase II 2018 Department of DefenseDefense Health Agency
  9. Integrated Computational Material Engineering Approach to Additive Manufacturing for Stainless Steel (316L)

    SBC: Senvol LLC            Topic: N16AT022

    The objective in this project is to implement and validate a probabilistic qualification framework that will enable additive manufacturing (AM) materials and part qualification through the use of a data-driven predictive model within a statistical framework. Senvol seeks to develop and validate a data-driven ICME probabilistic framework for assisting qualification of AM materials and parts. Phase ...

    STTR Phase II 2018 Department of DefenseNavy
  10. Innovative Packaging to Achieve Extremely Light Weight Sensor Pod Systems

    SBC: Mentis Sciences, Inc.            Topic: N17AT007

    Mentis Sciences, Inc. and the University of New Hampshire will continue the design work started in Phase I of the program to develop an ultra-lightweight modular electronics enclosure. During the Phase I effort, a concept for the enclosure was developed, and preliminary structural and thermal analysis was conducted to demonstrate the feasibility of the concept. At the conclusion of Phase I, the pr ...

    STTR Phase II 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government