You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Applications of Computational Command Leadership AI Models (ACCLAIM)

    SBC: STOTTLER HENKE ASSOCIATES, INC            Topic: ST092002

    A military without good leadership is a mob. Identification, preparation, guidance and mentoring of potential leaders are critical functions across all services. Leadership training and support can be substantially improved by refinement of theories and models on what constitutes good leadership, and what enables individual to be effective leaders. DoD needs better models of how leaders learn, ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  2. Automated Video Activity Analysis for Military Operations

    SBC: MAYACHITRA, INC.            Topic: ST081010

    The increasing use of video in force protection, autonomous vehicles reconnaissance, and surveillance in general has created a great demand for automated analysis and monitoring. It is infeasible to have humans monitoring and analyzing the vast amount of video used in such surveillance, and automated analysis yields hope to ease the burden and increase the amount of information extracted from col ...

    STTR Phase II 2010 Department of DefenseDefense Advanced Research Projects Agency
  3. Dynamic Multisensor Exploitation (DYME)

    SBC: Technology Service Corporation            Topic: ST081008

    The challenges faced by airborne and ground-based sensors in detecting, classifying, identifying, associating and tracking difficult moving targets, such as insurgent forces, operating in difficult terrain such as mountains and forests will be addressed. Our team will quantify the performance that can be achieved using multi-sensor, multi-spectral, and multi-platform techniques, where the sensors ...

    STTR Phase II 2010 Department of DefenseDefense Advanced Research Projects Agency
  4. High Speed Polarization Modulation of Microcavity Lasers for Laser Radar (LADAR) Applications

    SBC: Aerius Photonics, LLC.            Topic: ST092003

    A need exists for polarization interrogating and discriminating Ladar systems to detect and discriminate defilade targets. In the proposed effort, Aerius, and our partner at the University of Illinois, will apply photonic crystal technology to extend Aerius’ high power, high wall plug efficiency, Vertical-Cavity Surface-Emitting Laser (VCSEL) results to develop a stable polarization switched VC ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  5. Long Coherence Length Far Ultraviolet Laser for High-Resolution Nano-Fabrication

    SBC: ACTINIX            Topic: ST071006

    Cost effective semiconductor processing tools that enable the high-resolution nano-fabrication of low-volume electronics are needed by the DOD. The printing of ultra-fine gratings on silicon wafers using interference immersion lithography is envisaged as a first maskless process step in the fabrication of advanced application specific integrated circuits. Next generation interference immersion lit ...

    STTR Phase II 2010 Department of DefenseDefense Advanced Research Projects Agency
  6. Micro-sized Microwave Atmospheric Satellite Cluster (MicroMAS)

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: ST092005

    Small satellites working in coordinated manner as part of a distributed constellation hold the promise to revolutionize DoD space operations. However, small satellites also have significant inherent limitations. Their size limits the types of sensors that they can accommodate. It also limits propulsion, power generation and attitude control capabilities. One way of overcoming some of these lim ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  7. Monte Carlo Sampling Based Collision Detection Algorithm Development And False Positive And False Negative Rate Analysis: A Bayesian Approach

    SBC: Princeton Vision LLC            Topic: ST081005

    In this Phase II proposal, the main thrust is to build a hardware MCICD prototype, and validate the FAR/FNR through real vehicle testing. By leveraging the existing LADAR based sensing platform in CMU, we expect to shorten the development cycle and reduce the overall cost. Extensive real vehicle testing is expected both in staged scenarios and in normal traffic. In this Phase II program, we also p ...

    STTR Phase II 2010 Department of DefenseDefense Advanced Research Projects Agency
  8. New Thruster for Proliferated Satellites Has More Force and Longer Life

    SBC: The Granville Group Inc.            Topic: ST092005

    Granville has designed a new satellite/spacecraft propulsion engine, GREP, delivering over 100.mN/1.0 kW of force from strong electromagnetic energy… more force magnitude and efficiency than existing propellant limited ion thrusters. And, because it uses renewable power from on-board solar/electric panels, GREP offers extended propulsion maneuver life, up to 15 years or more, substantially lon ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  9. Novel Methods for Rapid Detection of Infection Agents and the Severity of Cellular Damage

    SBC: DiaCarta, Inc.            Topic: ST081003

    Early detection of virulent infectious pathogens is critical to blocking the devastating epidemic spread of the pathogen and the potential harm this could have on our armed forces and general populations. In Phase I, we have utilized the state-of-the-art QuantiGene 2.0 technology to establish an assay for the sensitive quantification of SARS (epidemic spread in 2001) and assessing plasma DNA level ...

    STTR Phase II 2010 Department of DefenseDefense Advanced Research Projects Agency
  10. Novel Methods for Sensor Quieting in Turbulent Flows

    SBC: PROGENY SYSTEMS, LLC            Topic: ST092004

    The Progeny – University of Utah team proposes a new approach for flow noise reduction to improve acoustic sensor performance. Our proposal is to investigate the ability of controlling the turbulent flow by utilizing acceleration which makes the flow locally laminar. Our proposed method of achieving acceleration is to send the flow around a concave surface, by adding a “two-dimensional bump ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
US Flag An Official Website of the United States Government