You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Alignment Tolerant Optical Connector with Active Regenerative Element

    SBC: ULTRA COMMUNICATIONS, INC.            Topic: A12AT008

    This program creates a new class of advanced transceiver techology. This technology can create 40 Gbps VCSEL-based micro-transceiver (uTRX) components that operate reliably over the standard military temperature range of -55°C to 125°C in Army environments. uTRXs are low-cost, compact components that can be assembled onto the PCB in close proximity to high-performance ASICs using conventional ...

    STTR Phase II 2013 Department of DefenseArmy
  2. On Demand Energy Activated Liquid Decontaminants and Cleaning Solutions

    SBC: TDA Research, Inc.            Topic: A12aT005

    Decontamination of chemical and biological threats demands a very reactive solution. It is ideal to generate the decontaminants on-site: the activated decontaminant is highly reactive and quickly destroys chemical and biological warfare agents; prior to activation the ingredients can be safely stored for years, shipped, and handled. TDA's electrochemical decontamination (eClO2) technology u ...

    STTR Phase II 2013 Department of DefenseArmy
  3. Chemical Analyzer System for In Situ and Real Time Surface Monitoring for Composition Control During Synthesis of Compound Semiconductor Films

    SBC: Staib Instruments, Inc.            Topic: A13AT011

    The overall objective of this proposal is to evaluate the new in-situ growth monitoring system, Auger Probe, in an MBE environment for reliable and reproducible, highly precise results. State-of-the art data manipulation techniques will be used without impacting the growth process (MBE in this case). Using Auger Electron Spectrometry (AES), the Probe system will be used for in situ, real time an ...

    STTR Phase I 2013 Department of DefenseArmy
  4. Multifunctional Textile Coating of Military Fabrics

    SBC: MATERIALS MODIFICATIONS INC.            Topic: A13AT020

    This STTR Phase I project will develop a novel multifunctional coating to combat a wide range of threats in a variety of complex situations for the warfighter. Military combat uniforms currently use NYCO fabrics (Nylon/cotton 50/50). The US Army is seeking new coating technologies that will impart multifunctional properties such as antistatic, conductive, flame resistance, improved abrasion resis ...

    STTR Phase I 2013 Department of DefenseArmy
  5. Additive Manufacturing of Multifunctional Nanocomposites

    SBC: Sciperio, Inc.            Topic: A13AT010

    Sciperio with team members Georgia Institute of Technology and Centecorp have teamed up to develop an Additive Manufacturing Composite using nano and micro fillers. The team will develop multi-scale models that are supported by experimental characterization for advanced 3D Printable materials. Inelastic response of high strength hierarchical structures composed of engineered materials and specif ...

    STTR Phase I 2013 Department of DefenseArmy
  6. A universal framework for non-deteriorating time-domain numerical algorithms in Maxwell's electrodynamics

    SBC: COMPUTATIONAL SCIENCES LLC            Topic: A13AT008

    The project will remove a key difficulty that currently hampers many existing methods for computing unsteady electromagnetic waves on unbounded regions. Numerical accuracy and/or stability may deteriorate over long times due to the treatment of artificial outer boundaries. We propose to develop a universal algorithm and software that will correct this problem by employing the Huygens'principl ...

    STTR Phase I 2013 Department of DefenseArmy
  7. Mobile Health Application for Family and Behavioral Health Provider Communication

    SBC: INFERLINK CORPORATION            Topic: A13AT018

    Clinical monitoring of mental health status has not evolved much from the routine meeting between patient and clinician, which suffers from a lack of quantification, irregular and anecdotal reporting, and does not necessarily include input from caregivers. This is unfortunate given today's technology, where people routinely volunteer to track their own health related behavior, such as exerc ...

    STTR Phase I 2013 Department of DefenseArmy
  8. Soft and Elastomeric Intramuscular Electrode with Therapeutic Delivery Capability

    SBC: TDA Research, Inc.            Topic: A13AT019

    Approximately 5-6% of military injuries involve some form of major peripheral nerve injury with little chance of spontaneous healing. Currently these injuries lead to major impairment of voluntary muscle function in the limbs and extremities, making tasks of walking, reaching, grasping, etc. very difficult or impossible for many patients. It is not enough to focus therapeutic treatment on the se ...

    STTR Phase I 2013 Department of DefenseArmy
  9. Coherent Beam Combining of Mid-IR Lasers

    SBC: Pranalytica, Inc.            Topic: A10aT007

    Many military applications require efficient optical sources producing several to hundred watts in continuous-wave (CW) or quasi-continuous-wave (QCW) operation at room temperature (RT) in the MWIR (3-5 micron) and LWIR (8-12 micron) regions. While QCLs have become the sources of choice in these spectral regions, the only realistic option to attain hundred-watt power level with good beam quality i ...

    STTR Phase II 2013 Department of DefenseArmy
  10. Compact, Rugged, and Low-Cost Wavelength-Versatile Burst Laser

    SBC: Performance Lasers            Topic: A11aT009

    Current of the shelf commercial laser systems that are used for LIBS and other optical detection techniques are too costly, large, low performance and unreliable. The reason for it is because commercial laser systems are designed for continuous operation. Only one or few laser pulses are needed for detection, therefore, low cost burst lasers with the proper parameters are needed. Burst mode operat ...

    STTR Phase II 2013 Department of DefenseArmy
US Flag An Official Website of the United States Government