You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Metal Digital Direct Manufacturing (MDDM) for Close-Out of Combustion Chambers and Nozzle Fabrications

    SBC: Keystone Synergistic Enterprises, LLC            Topic: T1204

    This NASA sponsored STTR project will investigate methods for close-out of large, liquid rocket engine, nickel or stainless steel nozzle, coolant channels utilizing robotic laser and pulsed-arc additive manufacturing (AM)methods. Structural jacket to coolant channel land area interface strength will be quantified and metallurgical characterization completed. Process optimizations will be conducte ...

    STTR Phase II 2017 National Aeronautics and Space Administration
  2. High Performance Simulation Tool for Multiphysics Propulsion Using Fidelity-Adaptive Combustion Modeling

    SBC: STREAMLINE NUMERICS, INC.            Topic: T102

    The innovation proposed here is a fidelity-adaptive combustion model (FAM) implemented into the Loci-STREAM CFD code for use at NASA for simulation of rocket combustion. This work will result in a high-fidelity, high-performance multiphysics simulation capability to enhance NASA's current simulation capability of unsteady turbulent reacting flows involving cryogenic propellants. This novel FAM m ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  3. Launch Weather Decision Support System

    SBC: Radiometrics Corporation            Topic: T103

    Launch safety and efficiency requires timely and accurate wind, thermodynamic and pressure information from the surface to 20 km height, and lightning risk identification. A Doppler radar now provides wind measurements that satisfy this requirement at the Eastern Test Range. Thermodynamic soundings are provided by intermittent radiosondes on launch day. Typical intervals of an hour or more between ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  4. Efficient On-board Lamberts Solution for DSM

    SBC: Advanced Space LLC            Topic: T1102

    Distributed Spacecraft Missions (DSMs) such as constellations, formation-flying missions, and fractionated missions provide unique scientific and programmatic benefits. Distributed mission architectures allow for multipoint in-situ measurements, multi-angle viewpoints, and considerably improved understanding of the connections between separately measured phenomena and their time variations. DSMs a ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  5. Maneuvering Environment for Tiltwing Aircraft with Distributed Electric Propulsion

    SBC: EMBEDDED DYNAMICS LLC            Topic: T1501

    The tiltwing class of aircraft consists of vehicles with the ability to rotate the wing and propulsion system as a unit a full 90 degrees from the standard fixed wing configuration to one in which the wing and thrust axis become perpendicular to the body axis. This thrust vectoring capability allows the aircraft to utilize thrust borne flight for vertical takeoff and landing as well as the convent ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  6. uG-LilyPond- Floating Plant Pond for Microgravity

    SBC: Space Lab Technologies, LLC            Topic: T702

    The proposed μG-LilyPond is an autonomous environmentally controlled floating plant cultivation system for use in microgravity. The μG-LilyPond concept expands the types of crops that can be grown on a spacecraft in a flexible, efficient, low maintenance package. The μG-LilyPond features several innovations relative to state of the art, including passive water and nutrient delivery to floating ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  7. Heterogeneous Silicon Photonics OFDR Sensing System

    SBC: Luna Innovations Incorporated            Topic: T802

    Luna will team with Dr. John Bowers of UCSB to develop an Optical Frequency Domain Reflectometry (OFDR) system-on-chip using heterogeneous silicon photonics to enable a minimal weight structural health monitoring system. This system-on-chip will be the building block for distributed sensing interrogation systems that are the size of a deck of playing cards. This lightweight, rugged, and miniature ...

    STTR Phase I 2017 National Aeronautics and Space Administration
  8. Empirical Optimization of Additive Manufacturing

    SBC: Universal Technology Corporaration            Topic: T1204

    In this Phase II STTR project, the proposed collaborative effort between UTC, AFIT, and ULRF represents a crucial step forward for AM. UTC’s unique AM optimization and process control framework, constructed entirely from experimental sensor data collected in-situ, will finally transfer technology from our SLM test bed system to state-of-the-art and commercial-grade systems, including a Concept ...

    STTR Phase II 2017 National Aeronautics and Space Administration
  9. Combat Systems of the Future

    SBC: Advanced Systems/Supportability Engineering Technologies And Tools, Inc.            Topic: N05149

    The S-351 mini-sub is a prototype of the Dry Combat Submersible (DCS). This prototype was established as a means of risk reduction prior to a full commitment to the DCS program. Both of these platforms have an operational need to transit with minimum operator fatigue safely to a pre-defined point and covertly deploy and retrieve SEALS. To meet these operational needs, these platforms require upgra ...

    STTR Phase II 2017 Department of DefenseSpecial Operations Command
  10. Efficient Composite Repair Methods for Launch Vehicles

    SBC: Luna Innovations Incorporated            Topic: T1202

    Polymer matrix composites are increasingly replacing traditional metallic materials in NASA launch vehicles. However, the repair and subsequent inspection methods for these materials are considerably more complicated. Typically, a composite laminate patch must be manually fabricated and bonded or co-cured to the damaged structure. To ensure high quality patches with sufficient compaction and l ...

    STTR Phase I 2017 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government