You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  2. Rapid Development of Weapon Payloads via Additive Manufacturing

    SBC: MATSYS INCORPORATED            Topic: DTRA16A001

    MATSYS proposes to adapt emerging additive manufacturing techniques (so-called 3-D Printing) for use with reactive structural materials and demonstrate this capability to rapidly fabricate reactive case. Our concept incorporates two major manufacturing steps: 3D printing of green compacts from pure Al or Al-based reactive powder blend; and Microwave (MW) sintering of green compacts into net-shaped ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  3. Self-fragmenting Structural Reactive Materials (SF-SRM) for High Combustion Efficiency

    SBC: MATSYS INCORPORATED            Topic: DTRA16A002

    MATSYS proposes to develop, test and evaluate a scalable metal-based reactive structural material that will self-fragment to micron or sub-micron scale fuel particles when subjected to explosive shock loading, resulting in significantly enhanced metal combustion efficiency. Use of reactive material casings offers the potential for several-fold increases in blast and overpressure by generating rapi ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  4. Portable and Automated Radiation Effects Test Structures for Advanced Technology Nodes

    SBC: MICROELECTRONICS RESEARCH DEVELOPMENT CORPORATION            Topic: DTRA16A003

    Micro-RDC will develop portable radiation effects test structures that scales to new process nodes. These structures will enable the investigation of the effects of radiation on the new technology from the material processing level as well as the circuit level. The production of the chosen structures and the development of software to extract the model parameters will form the framework. A suit ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  5. Modular Pulse Charger and Laser Triggering System for Large-Scale EMP and HPM Applications

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES, INC.            Topic: DTRA16A004

    For effective protection against EMP and HPM threats, it is important to understand the physics of the threats, and also to quantify the effects they have on electrical systems. EMP and HPM vulnerability testing requires delivery of high peak power and electric fields to distant targets. The most practical solution to simulate such environments is to develop a modular, optically-isolated MV-antenn ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  6. Data Driven Intent Recognition Framework

    SBC: OTHER LAB, INC.            Topic: NSF13599

    A critical aspect of exoskeleton control that has to date introduced a performance limitation is the ability of the exoskeleton to recognize the intent of the operator so it can apply assistance to their desired motion. This intent recognition effort is typically solved using ad-hoc methods where subject matter experts make design decisions and tune transitions to identify intended maneuvers as re ...

    STTR Phase II 2016 Department of DefenseSpecial Operations Command
  7. Liquid cooled viscoelastic actuation for robust legged robot locomotion

    SBC: APPTRONIK INC            Topic: H601

    Apptronik Systems in cooperation with the University of Texass Human Centered Robotics Lab (HCRL), Carnegie Mellon Universitys Robotics Institute and Italys National Research Institute (CNR), will collaborate to develop a new type of exoskeleton that is founded upon Apptroniks Visco-Elastic Liquid Cooled Actuator (VLCA). The fundamental goal of this program is the development of a powered exoskel ...

    STTR Phase II 2017 Department of DefenseSpecial Operations Command
  8. Upper Body Addendum to Proposal S2-0328

    SBC: APPTRONIK INC            Topic: H601

    This is an Addendum to previously submitted proposal that includes the addition of a powered upper body portion of an exoskeleton. In this addendum we propose the additional requirements of researching, fabricating and integrating a powered upper body to the previously outlined lower body. These two systems together will comprise the entire exoskeleton proposed by the contractor. Through this ...

    STTR Phase II 2017 Department of DefenseSpecial Operations Command
  9. Combat Systems of the Future

    SBC: Advanced Systems/Supportability Engineering Technologies And Tools, Inc.            Topic: N05149

    The S-351 mini-sub is a prototype of the Dry Combat Submersible (DCS). This prototype was established as a means of risk reduction prior to a full commitment to the DCS program. Both of these platforms have an operational need to transit with minimum operator fatigue safely to a pre-defined point and covertly deploy and retrieve SEALS. To meet these operational needs, these platforms require upgra ...

    STTR Phase II 2017 Department of DefenseSpecial Operations Command
  10. Liquid-cooled actuation to achieve greater degrees of freedom and range of motion in untethered exoskeletons

    SBC: APPTRONIK INC            Topic: H6018135

    Apptronik Systems Inc., in cooperation with the University of Texas Human Centered Robotics Lab (HCRL) and Huston-Tillotson University Robotics Lab (a historically black college and university HBCU), endeavor to advance the movement capabilities and modularity of the exoskeleton being developed under contract #H92222-17-C-0050. The primary goal of this program is to optimize the range of movement ...

    STTR Phase II 2017 Department of DefenseSpecial Operations Command
US Flag An Official Website of the United States Government