You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD Research Corporation            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  2. Bio-mathematical Models of Aggregated Tissues & Organ Properties

    SBC: Corvid Innovation LLC            Topic: DHP16A001

    Realistic surgical simulation requires a combination of representative tissue geometry, accurate tissue material properties and lifelike tool-tissue interaction forces. Recent advances in computational power and imaging modalities have provided the capability to represent the anatomical details required for surgical training; however, the mathematical models which govern the underlying tissue pro ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  3. Bio-Mathematical Models of Aggregated Tissues & Organ Properties

    SBC: BioMojo, LLC            Topic: DHP16A001

    BioMojo LLC and the Departments of Mathematics and Biomedical Engineering at the University of North Carolina Chapel Hill, will develop a preliminary bio mathematical model framework to represent how human tissues interact and behave at their boundaries. Tissue interaction properties (e.g. tensile, shear, friction, and so forth) of connective, epithelial, muscular, and nervous tissue including su ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  4. Use of Highly Porous Polymer Beads to Remove Anti-A and Anti-B Antibodies from Plasma for Transfusion

    SBC: CytoSorbents Medical Inc.            Topic: DHP15B001

    The ready availability of universal donor plasma to rapidly treat massively bleeding hospital trauma patients and warfighters with combat casualties is a key element of current recommendations for trauma resuscitation, yet universal AB donor plasma is rel

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  5. Smart Femtosecond Fiber Laser Wound Healing System

    SBC: POLARONYX, INC.            Topic: DHP15B002

    Based on our success in developing the world first commercial high energy femtosecond fiber laser system and our leading proprietary technology development in ultrashort pulsed fiber laser material processing, PolarOnyx proposes, for the first time, a compact high energy fiber laser based smart wound healing tool to meet with the requirement of this DHP solicitation. It includes a high energy fs f ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  6. Innovative Wound Regeneration Support Approaches to Enable Rapid Treatment of Wounded Warfighters

    SBC: Zetroz Systems LLC            Topic: A14AT016

    Ultrasound is a therapeutic modality which has been used clinically for 60 years, but has been limited in practice by the complexity of the technology. Recent research has allowed for the development of a portable, wearable, long duration, low intensity therapeutic ultrasound system. The system is powered by battery, and can be applied by a user to deliver up

    STTR Phase II 2016 Department of DefenseDefense Health Agency
  7. Data Driven Intent Recognition Framework

    SBC: Other Lab Inc.            Topic: NSF13599

    A critical aspect of exoskeleton control that has to date introduced a performance limitation is the ability of the exoskeleton to recognize the intent of the operator so it can apply assistance to their desired motion. This intent recognition effort is typically solved using ad-hoc methods where subject matter experts make design decisions and tune transitions to identify intended maneuvers as re ...

    STTR Phase II 2016 Department of DefenseSpecial Operations Command
US Flag An Official Website of the United States Government