You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Lightweight, Stable Optical Bench with Integrated Vibration Attenuation

    SBC: SAN DIEGO COMPOSITES, INC.            Topic: MDA13T007

    The goal of this program is to design a lightweight optical bench capable of remaining stable under temperature and moisture changes, while isolating the precision optical array from vibrations such as engine noise and air turbulence. By integrating a customizable periodic stack in the bench, vibrations are attenuated more effectively than commercially available mounts. Additionally, the periodic ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
  2. Embedded Sensors for Flight Test (Every Aircraft a Test Aircraft)

    SBC: Nextgen Aeronautics, Inc.            Topic: AF14AT01

    Increasing system capabilities in terms of weapon systems, ISR payloads, GNC, etc., enabled by smaller and more capable electronics systems have led to a trend for overall size reduction in military aircraft. This has resulted in a reduction in the avail...

    STTR Phase II 2016 Department of DefenseAir Force
  3. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD Research Corporation            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  4. Bio-mathematical Models of Aggregated Tissues & Organ Properties

    SBC: Corvid Innovation LLC            Topic: DHP16A001

    Realistic surgical simulation requires a combination of representative tissue geometry, accurate tissue material properties and lifelike tool-tissue interaction forces. Recent advances in computational power and imaging modalities have provided the capability to represent the anatomical details required for surgical training; however, the mathematical models which govern the underlying tissue pro ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  5. Bio-Mathematical Models of Aggregated Tissues & Organ Properties

    SBC: BioMojo, LLC            Topic: DHP16A001

    BioMojo LLC and the Departments of Mathematics and Biomedical Engineering at the University of North Carolina Chapel Hill, will develop a preliminary bio mathematical model framework to represent how human tissues interact and behave at their boundaries. Tissue interaction properties (e.g. tensile, shear, friction, and so forth) of connective, epithelial, muscular, and nervous tissue including su ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  6. Methods for Actionable Measures of Absolute Cognitive Workload

    SBC: VR Rehab Inc            Topic: N16AT002

    Cognitive workload is the amount of mental effort an individual must exert to perform a required set of tasks. The proposed methods for actionable measures of absolute cognitive workload will integrate subjective workload ratings together with real-time physiological measures and assessments of mission effectiveness based on carefully designed scenarios. These data will be used as input parameters ...

    STTR Phase I 2016 Department of DefenseNavy
  7. Process diagnostics to quantify mechanical performance of AM parts

    SBC: POLARONYX, INC.            Topic: N16AT004

    This Navy STTR Phase I proposal presents an unprecedented NDI tool to quantify mechanical properties of metal parts made with laser additive manufacturing with material characteristics and process parameters. A fiber laser SAW and heterodyne detection is used with LIBS to study both in-process and post-process for both flat and shaped parts. It is the enabling technology for characterize the AM pa ...

    STTR Phase I 2016 Department of DefenseNavy
  8. Air Cycle Machine Low Friction, Medium Temperature, Foil Bearing Coating

    SBC: ACREE TECHNOLOGIES INCORPORATED            Topic: N16AT005

    The purpose of this project is to demonstrate the feasibility of using an innovative, durable, low friction, and non-toxic solid lubricant coating for foil air bearings for air cycle machines (ACM). Acrees coating provides superior wear characteristics at all temperatures and provides a substantial improvement over polyimide type coatings that are currently used on ACMs. The coating consists of tw ...

    STTR Phase I 2016 Department of DefenseNavy
  9. Additive Manufacturing of 17-4 PH Stainless Steel Metal Matrix Composites using Nickel functionalized Carbon Nanotubes

    SBC: Shepra, Inc.            Topic: N16AT007

    Additive Manufacturing (AM) has a potential to significantly reduce the cost and lead time associated with the maintenance and sustainment issues faced by the US Navy. However, current materials such as 17-4 PH Stainless Steel typically achieve half the required mechanical properties when additively manufactured, thus limiting the use of AM in critical parts. Recent advancements in carbon nanotube ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Nanoporous block polymer separators for high performance and safe Li-ion batteries

    SBC: ADA Technologies, Inc.            Topic: N16AT008

    To meet Navy needs for high performance and safe lithium ion (Li-ion) batteries for naval aircraft, ADA Technologies Inc. (ADA) and its university collaborator propose to develop and optimize tailor designed nanoporous separators derived from functionalized block copolymers (polyolefins) with low cost precursors. The innovative strategy provides a powerful tool to allow exquisite tuning of perform ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government