You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Prediction of Strutural Response and Fluid-Induced Vibration in Turbomachinery

    SBC: CFD Research Corporation            Topic: T102

    Advanced turbomachinery components play a critical role in launch vehicle and spacecraft liquid rocket propulsion systems. To achieve desired efficiencies, extremely tight tolerances are often imposed between inducer blades and shrouds or other system components which sets up strong interactions that influence both the aerodynamics and the structural performance of blades and vanes. These transien ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  2. Unified In-Space Propulsion Framework for Prediction of Plume-Induced Spacecraft Environments

    SBC: CFD Research Corporation            Topic: T102

    Chemical contamination of spacecraft components as well as thermal and force loading from firing liquid propellant thrusters are critical concerns for in-space propulsion applications. Gas molecular contamination and liquid droplet deposition due to incomplete combustion threaten to damage surface materials, sensitive instruments and optical sensors, and poses major risks for mission success. Liqu ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  3. Visualizing and Comparing Exploration Plan Alternatives and Change Effects (xPACE)

    SBC: Traclabs Inc.            Topic: T1101

    Future human space flight missions will take astronauts deeper into space and require increased crew independence from Earth-based flight controllers (crew autonomy). Consequently, they will need to perform more tasks and a greater diversity of tasks. A critical resource for meeting these challenges is greater reliance on robots that can operate with more autonomously [NASA Roadmap TA4]. Greater r ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  4. Mega-Watt Class High Voltage, Variable Frequency, Propulsor Power Unit

    SBC: Balcones Technologies LLC            Topic: T1501

    Balcones Technologies, LLC (BT) proposes to adapt technologies developed by and resident in BT and The University of Texas at Austin Center for Electromechanics (CEM) in the area of advanced high efficiency, high-power density motors/generators and propulsion power train systems to address SBIR 2016 Subtopic T15.01 Power Systems for Hybrid Electric Propulsion. In particular, our team will develop ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  5. High Fidelity Computational Models for Aggregated Tissue Interaction in Surgical Simulations

    SBC: CFD Research Corporation            Topic: DHP16A001

    Surgical simulations aiming to support surgeon practices and medical education have attracted enormous research effort over the last two decades. However, the physical reality, especially on simulating aggregated tissue interaction, is still unsatisfactory. In this proposed work, an open source surgery simulation framework, SoFMIS, will be utilized and enhanced with tissue interaction models to a ...

    STTR Phase I 2016 Department of DefenseDefense Health Agency
  6. High-Gain, Low-Excess-Noise APD Arrays for Near-Single-Photon-Sensitive LADAR

    SBC: VOXTEL, INC.            Topic: T901

    One of the challenges facing missions to other planetary bodies including Earth's Moon, Mars, Venus, Titan, Europa; and proximity operations (including sampling and landing) on small bodies such as asteroids and comets' is the ability to provide accurate altimetry for descent, then assess safe landing sites by surveying the landscape. To address NASA's need for space-hardened planetary entry, desc ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  7. A Cubesat Hyperspectral Imager

    SBC: NANOHMICS INC            Topic: T801

    Mapping spectrometers have been extremely useful in multiple NASA applications, from Earth climate monitoring to identifying hydrocarbon lakes on Titan. Traditionally, imaging spectroscopy systems are not only heavy but also large in order to accommodate the long path lengths needed for spectral separation. There are several varieties, such as push-broom and scanning imaging spectrometers, but h ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  8. Highly Efficient Closed-Loop CO2 Removal System for Deep-Space ECLSS

    SBC: TDA Research, Inc.            Topic: T604

    TDA Research Inc.(TDA) in collaboration with University of Puerto Rico ? Mayaguez (UPRM is proposing to develop a highly efficient CO2 removal system based on UPRM proprietary strontium exchanged silico-alumino-phosphate (Sr-SAPO-34) for closed loop space craft cabin air re-vitalization during deep space missions.

    STTR Phase I 2016 National Aeronautics and Space Administration
  9. Sustainable Water Purification

    SBC: Streamline Automation, LLC            Topic: T603

    Newly developed phase-engineered and low dimensional materials have opened the door to the design of materials structures that exhibit extremely efficient ionic transport. Recently, a new type of electro-filtration system designed to convert thermal power into purified water from salt water (or other ionic pollutants) has been demonstrated in the lab. The system is based on a bi-phasic nanoplate ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  10. Non-Mechanical Beam Steering for Entry, Descent and Landing Sensors

    SBC: BOULDER NONLINEAR SYSTEMS, INC.            Topic: T901

    Boulder Nonlinear Systems (BNS) and University of Dayton (UD) will team on development of a non-mechanical beam steering (NMBS) subsystem for Entry, Descent and Landing (EDL) sensors. BNS will improve their current polarization grating (PG) technology which is capable of switching well over the +- 25 degree requirement called for in the solicitation. Advances to the PG technology specific to the ...

    STTR Phase I 2016 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government