You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Additive Manufacturing of Metallic Materials for High Strain Rate Applications

    SBC: MRL MATERIALS RESOURCES LLC            Topic: MDA17T001

    Metallic additive manufacturing (AM) is an attractive technology for the production of lethality test articles due to the potential for significantly reduced lead time and manufacturing cost.However, in order to be effective in providing accurate lethality data, the properties of the AM material have to match closely the properties of conventionally manufactured alloys found in real threat targets ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  2. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: ARCTOS Technology Solutions, LLC            Topic: DLA18A001

    Universal Technology Corporation (UTC) has teamed with the University of Dayton Research Institute (UDRI), Stratonics, and Macy Consulting to demonstrate not only the transitionability into commercial systems, but also to develop the data analytics and monitoring and control requirements to extract the full value fromseveral sensors, including the Stratonics ThermaViz, acoustic and profilometry se ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
  3. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: X-Wave Innovations, Inc.            Topic: DLA18A001

    Additive Manufacturing (AM) is a modern and increasingly popular manufacturing process for metallic components, but suffers from well known problems of inconsistent quality of the finished product. Process monitoring and feedback control are therefore crucial research areas with a goal of solving this problem. To address this concern, X-wave Innovations, Inc. (XII) and the University of Dayton Res ...

    STTR Phase I 2018 Department of DefenseDefense Logistics Agency
  4. Advanced Rocket Trajectory Propagation Techniques

    SBC: NANOHMICS INC            Topic: MDA17T002

    High-fidelity trajectory propagators are fundamental to the simulation and analysis of launch vehicles, missiles, and satellites. Applications in fields ranging from missile threat analysis to flightpath optimization seek fast and accurate solutions to large numbers of trajectories in federated simulation environments. Due to their robustness, well-known properties, and straightforward implementat ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  5. AIMSMART: Adaptive, Interactive MDA Semantic Model-based Articulation

    SBC: CYCORP, INC.            Topic: MDA11T003

    We will develop automatic ontology-aligning software, leveraging the enormous existing Cyc AI system to drive the formulation and ranking (pro/con argumentation) of hypotheses about term-term relationships, especially where the relationship is not simple 1-to-1 correspondence. Multiple Cyc micro-theories (contexts) will be created, to hold incommensurate alternative mappings, and logical conseque ...

    STTR Phase II 2013 Department of DefenseMissile Defense Agency
  6. A Li-Ion Battery Tool for Predicting Life and Performance for Satellite Orbit Operations Scenarios

    SBC: Global Aerospace Corporation            Topic: MDA08T008

    The expected life of satellite Li-Ion batteries is determined by many factors, including thermal considerations, electrode chemistries, orbit and mission life, DOD, and pulse power requirements. First-principles battery model literature pertains primarily to orbital cycling at moderate DOD under isothermal conditions without variable power loads. Knowledge must be extended to encompass wider life ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  7. An improved passivation process for the fabrication of high performance antimony based III-V superlattice materials

    SBC: IRDT Solutions, Inc            Topic: MDA12T003

    Phase I objective is to demonstrate the feasibility of our proposed passivation approach to minimize the dark current noise and improve the quantum efficiency in the GaSb based type II superlattice detectors. Phase I goal is to demonstrate the feasibility of our technology to fabricate photodiodes with cut-off wavelength in excess of 10µm, quantum efficiency exceeding 70% and dark current density ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  8. An Ultra-High Temperature Ceramic with Improved Fracture Toughness and Oxidation Resistance

    SBC: Plasma Processes, LLC            Topic: MDA09T002

    Hypersonic missile defense systems are being designed to reach global threats. During flight, external surfaces are predicted to reach temperatures in excess of 2200C. As a result, innovative, high performance thermal protection systems (TPS) are of great demand. Among ultra-high temperature ceramics (UHTC), it is well known that ZrB2- and HfB2-based materials have high melting temperatures and ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  9. Combined RF/IR Data Correlation

    SBC: Technology Service Corporation            Topic: MDA12T001

    Aegis BMD 5.0 CU will expand and update the Baseline 9 MRBM and IRBM threat set, while Aegis BMD 5.1 will have capabilities against more sophisticated short to intermediate range ballistic missiles. An ability to discriminate this wider set of increasingly sophisticated threats is essential. Technology Service Corporation (TSC) and the Michigan Tech Research Institute (MTRI) propose to identify fe ...

    STTR Phase I 2013 Department of DefenseMissile Defense Agency
  10. Contamination-free, Ultra-rapid Reactive Chemical Mechanical Polishing (RCMP) of GaN substrates

    SBC: Sinmat Inc            Topic: MDA09T001

    Gallium Nitride (GaN) substrates are ideal materials for fabrication of high-power and high-frequency devices based on III-V materials. The current state-of-the-art Chemical Mechanical Polishing (CMP) methods are plagued by several challenges, including, surface charge affects due to surface contamination, and sub-surface damages, which can limit the quality of III-V devices. Furthermore, there is ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government