You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Pulse Voltammetry Tools for Accurate and Rapid Analysis of Batteries

    SBC: CFD RESEARCH CORPORATION            Topic: A152092

    Pulse voltammetry techniques, coupled with model-based analysis tools, provide a number of advantages for quantitative analysis of electrochemically active materials that govern the performance of batteries and fuel cells. In prior Phase I and II research, CFD Research developed and validated computational models in software that reads voltammogram data from laboratory instruments; predicts the re ...

    STTR Phase II 2019 Department of DefenseArmy
  2. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is crucial to detect proliferation of nuclear material. Critical challenges include: (a) high sensitivity detection of signature emissions from radioactive isotopes, and (b) cost-effectiveness for deployment of sensor networks across large storage facil ...

    STTR Phase II 2019 Department of DefenseDefense Threat Reduction Agency
  3. Thin Film Deposition of Highly Conductive Metals for Sensor Applications- Phase II

    SBC: SUMMIT INFORMATION SOLUTIONS, INC.            Topic: A17AT001

    Deposition of highly conductive, continuous thin film metals has proven to be a significant challenge. There are several techniques that allow deposition of these metals, but their application is limited to planar surfaces and only offer complete line of sight deposition. During a recent Phase I STTR project, Summit Information Solutions, Inc. (Summit), in partnership with University of Alabama in ...

    STTR Phase II 2019 Department of DefenseArmy
  4. Rugged Automated Training System

    SBC: BARRON ASSOCIATES, INC.            Topic: A11aT019

    Barron Associates, Inc.~proposes to develop the Rugged Automated Training (RAT) system, a cost-effective, rugged, automated environment to train and deploy small animals to detect landmines and other compounds of interest, and to evaluate their performance. The RAT system will train animals to recognize odorants using standard Pavlovian conditioning procedures in specialized, automated operant ch ...

    STTR Phase II 2013 Department of DefenseArmy
  5. Incremental Learning for Robot Sensing and Control

    SBC: Net-Scale Technologies, Inc.            Topic: A09AT030

    The purpose of this proposal is to build a working prototype of a highly-adaptive, vehicle-independent, compact, low-power, low-cost, autonomous ground robot navigation system that incorporates the results obtained in our Phase I effort and in our earlier DARPA LAGR (Learning Applied to Ground Robots) work. The system will be able to quickly and automatically adapt to changing environments in real ...

    STTR Phase II 2013 Department of DefenseArmy
  6. Improve pyrotechnic smoke formulations that produce low flame

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: A11aT026

    The objective of this research is to develop materials that replace the current generation of visible smoke formulations used by the U.S. military. In particular the materials must produce low or no flame so that they don't present a fire hazard, have relatively low toxicity, and are efficient. The efficiency is defined in a figure of merit that combines fill factor, yield factor, extinctio ...

    STTR Phase II 2013 Department of DefenseArmy
  7. Plasmonic MEMS Sensor Array

    SBC: Five Stones Research Corporation            Topic: A10aT002

    Sensor development researchers and engineers have perpetually sought novel methods to reduce sensor size and improve performance. Continued miniaturization of sensors through micromachining has enabled novel applications and introduced new paradigms for engineered systems to interact with the world. The challenge has always been to improve performance while continually reducing size. In the curren ...

    STTR Phase II 2013 Department of DefenseArmy
  8. On Demand Energy Activated Liquid Decontaminants and Cleaning Solutions

    SBC: TDA RESEARCH, INC.            Topic: A12aT005

    Decontamination of chemical and biological threats demands a very reactive solution. It is ideal to generate the decontaminants on-site: the activated decontaminant is highly reactive and quickly destroys chemical and biological warfare agents; prior to activation the ingredients can be safely stored for years, shipped, and handled. TDA's electrochemical decontamination (eClO2) technology u ...

    STTR Phase II 2013 Department of DefenseArmy
  9. Multi-input Multi-output Synthetic Aperture Radar with Collocated Antennas

    SBC: TRIDENT SYSTEMS LLC            Topic: A10aT005

    The enormous effort devoted to the data acquisition, signal processing, and automatic recognition of stationary targets has resulted in a generation of synthetic aperture radar (SAR) systems that are meeting the challenge of real-world conditions. However, in a practical battlefield, moving targets may pose a more severe threat than stationary targets. Many high value targets are only vulnerable w ...

    STTR Phase II 2013 Department of DefenseArmy
  10. Origami Antibodies for Threat Sensing

    SBC: PARABON NANOLABS, INC.            Topic: A11aT021

    Beginning from an advanced stage of development, this Phase II STTR project will produce designs and prototypes for a ricin-specific artificial antibody constructed using DNA origami. These novel constructs will provide both a capture function (mimicking the properties of an antibody) and intrinsic optical reporting functionality, which marks a significant improvement over current antibody capabil ...

    STTR Phase II 2013 Department of DefenseArmy
US Flag An Official Website of the United States Government