You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Next Generation Satellite Communications

    SBC: Blue Cubed, LLC            Topic: AF19BT001

    Small Satellites are a rapidly growing technology and of great interest to both commercial and DOD customers. With the increased access to space and the maturation of small satellites, the mission capabilities have expanded significantly. Along with these expanded capabilities are a need for new approaches to satellite communications with increased capabilities. Blue Cubed is working on developing ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Design of Flexible Materials for Aerodynamic Structures

    SBC: ATREVIDA SCIENCE INC            Topic: AF19BT001

    The PI has worked on a design concept for a wind turbine blade with adaptive twist transformation. The design improves wind capture and reduces loading on the system drivetrain turbine by adapting the twist distribution in relation to wind speed. Structural adaptability is enabled by actuating a series of compliant segments that are mounted on a relatively rigid spar. The segments are assumed to h ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Power Electronics Thermal Interface (PETI) with Conductive Diamond Plating

    SBC: GLOBAL CIRCUIT INNOVATIONS INC            Topic: AF19BT001

    A growing number of electronic applications within the Air Force, such as devices for power conditioning and distribution, RF power amplification, and high power lasers have been identified for increased heat transfer requirements to maintain operational temperatures at acceptable levels while increasing the performance through higher power. However, this same target research that requires increas ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Open Call for Science and Technology Created by Early-Stage (e.g. University) Teams

    SBC: OmniScience LLC            Topic: AF19BT001

    This proposed Phase I STTR effort will be a collaboration between OmniScience LLC and the University of Colorado Colorado Springs (UCCS) Vision and Security Technology (VAST) Lab. The primary objective of this Phase I effort is to demonstrate feasibility of a brain computer interface (BCI) controller for augmented/virtual reality (AR/VR) and conventional screen displays, referred to herein as an A ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. An Advanced Undersea Lithium Ion Management System (U-LIMS)

    SBC: Impact Technologies            Topic: N10AT013

    Impact Technologies, in collaboration with Penn State Applied Research Laboratory, proposes to develop an advanced Battery Monitoring and Management System (BMMS) for lithium-ion battery packs that ensures adequate, safe, and reliable operation. This system will focus on real time diagnostics, prediction of catastrophic failure, and risk assessment for individual cells in high power applications. ...

    STTR Phase I 2010 Department of DefenseNavy
  6. Advanced Software Tools for Lithium Ion Battery Risk Assessment (LIBRA)

    SBC: Impact Technologies            Topic: N10AT014

    Impact Technologies, in collaboration with the Georgia Tech Center for Innovative Fuel Cell and Battery Technologies, proposes to develop tools for Lithium Ion Battery Risk Assessment (LIBRA). These tools will allow the Navy to analyze proposed Li-Ion battery designs and assess the overall risk to the platform in the event of failure in a single cell. The tool will also predict the effects of a ca ...

    STTR Phase I 2010 Department of DefenseNavy
  7. A Non-Contact Displacement Sensor for Estimating Sound Pressure Level in Pipes

    SBC: CREARE LLC            Topic: N10AT016

    The presence of noise in piping systems often serves as an early warning of mechanical problems such as faulty or cavitating pumps and valves, or boiling in cooling lines. Additionally, in many Naval environments, especially submarines, minimizing noise radiated from vibrating pipes is highly desirable. The ability to quantify the sound pressure level in fluid-filled pipes with an external sensor ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Magnetostrictive Vibration Energy Harvester (MAVEN)

    SBC: Impact Technologies            Topic: N10AT020

    Impact Technologies, in cooperation with Dr. Mohammed Daqaq from Clemson University, propose to develop a magnetostrictive materials based device for harvesting energy from mechanical vibration. The energy harvesting device will harness power from ship-hull vibrations in order to power sensing devices. This technology will be a key enabler for improved structural and machinery health management. K ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Wireless, Wide Frequency Band Otoactoustic Emissions Probe

    SBC: CREARE LLC            Topic: N10AT032

    The nature and requirements of military operations lead to high noise levels, exposing military and civilian personnel to the possibility of noise-induced hearing loss. Otoacoustic emission (OAE) probes can assess the health of the inner ear by testing the response of the cochlea to various types of stimuli. The measurement of emissions at high frequency has the potential to detect noise-induced d ...

    STTR Phase I 2010 Department of DefenseNavy
  10. A Battery Pack Risk Assessment Tool

    SBC: CREARE LLC            Topic: N10AT014

    When many Lithium-ion battery cells are integrated into a large pack, the possible outcomes resulting from individual cell faults are complex and difficult to predict. Consequently, there is great interest in developing design tools to aid in the optimization of pack performance as well as to understand and mitigate the effects of individual cell failures from propagating to other cells or even th ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government