You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Windable Lithium-ion Conducting Ceramic Electrolytes

    SBC: Chemat Technology, Inc.            Topic: A09AT011

    Lithium-air battery consists of a lithium anode electrochemically coupled to atmospheric oxygen through an air cathode. The major advantages of lithium air batteries are that air cathode active material, oxygen, is not stored internal to cell system and lithium anode being extremely lightweight metal with a highest theoretical specific energy density. This energy density is well comparable with t ...

    STTR Phase I 2010 Department of DefenseArmy
  2. Wideband Metamaterial Antennas Integrated into Composite Structures

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: N10AT021

    A team led by NextGen Aeronautics Inc., and working with San Diego State University proposes the development of redundant wideband antennas that are embedded in composite armor structures The planned work builds upon the team’s extensive prior experience in conformal load-bearing antenna structures (CLAS), antenna design, and metamaterials. The proposed antenna is a combination of concepts that ...

    STTR Phase I 2010 Department of DefenseNavy
  3. W-Band RF Instrumentation

    SBC: SRICO INC            Topic: A18BT002

    W-band millimeter waves have a number of important applications, including directed energy and, more recently, 5G FR2 network development. Reliable measurements of electric fields in the W-Band, while critical to the development of these applications, have proven challenging. This proposal addresses the development of an accurate, traceable, cost effective W-band RF field strength detector. The so ...

    STTR Phase I 2019 Department of DefenseArmy
  4. Wave-Optic Propagation Computation Enabled by Machine Learning Algorithms (WOPA)

    SBC: Luminit LLC            Topic: AF18BT004

    To address the U.S. Air Force need for Developing innovative wave-optics Propagation methods to model laser systems that are faster, efficient and more accurate, Luminit, LLC, and University of Southern California (USC) propose to develop Wave-Optic Propagation Computation Enabled by Machine Learning Algorithms (WOPA). The proposed algorithms will be based on cutting off redundant frequencies upon ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Vortex Control for Low-Noise DEP Urban Aircraft

    SBC: Surfplasma, Inc.            Topic: T15

    Suppression of noise from aircraft is a vital NASA goal, especially important for the vision of Urban Air Mobility. Small urban aircraft may utilize Distributed Electric Propulsion along with advanced structural and electric motor/storage technologies to achieve the necessary flight capability. However, these aircraft utilize propellers or fans to achieve the necessary thrust, with attendant commu ...

    STTR Phase I 2019 National Aeronautics and Space Administration
  6. VLSI Compatible Silicon-on-Insulator Plasmonic Components

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: AF08BT18

    This Small Business Technology Transfer Phase I project will develop ultradense, low-power plasmonic integration components and devices for on-chip manipulation and processing of optical signals. Both passive and active components will be studied. Detailed performance predictions will be obtained through finite element modeling (FEM) of the harmonic Maxwell’s equations. The FEM provides detai ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Visual Relative Navigation via Intelligent Ephemeral Relationships (VRNIER)

    SBC: TOYON RESEARCH CORPORATION            Topic: ST18C006

    As unmanned aircraft systems (UAS) become more prevalent there is an increasing desire to automate UAS navigation and control. To enable future UASs to perform a wider variety of missions, the they must be able to complete autonomous relative navigation to accomplish missions. Current technologies rely heavily on GPS measurements, which are undesirable since GPS signals may be unavailable in many ...

    STTR Phase I 2019 Department of DefenseDefense Advanced Research Projects Agency
  8. Virtual Reality for Multi-INT Deep Learning (VR-MDL)

    SBC: INFORMATION SYSTEMS LABORATORIES INC            Topic: AF19AT010

    Recent advances and successes of deep learning neural networks (DLNN) techniques and architectures have been well publicized over the last several years. Voluminous, high-quality and annotated training data, or trial and error in a realistic environment, is required to achieve the promised performance potential of DLNNs. Unfortunately for DoD and/or Intelligence Community (IC) applications of mult ...

    STTR Phase I 2019 Department of DefenseAir Force
  9. Virtual Accelerator Support for HPC Clouds

    SBC: RNET TECHNOLOGIES INC            Topic: 02a

    Due to huge levels of computing parallelism and higher performance per watt, comuting accelerators are crucial for increasing HPC efficiency. This is economically significant for small and medium size manufacturing companies (SMMs) and essential for transition to Exascale computing. However, due to high procurement costs, in-house maintenance of an accelerated HPC cluster is prohibitive for many ...

    STTR Phase I 2013 Department of Energy
  10. Vibration imaging for the characterization of extended, non-cooperative targets

    SBC: EXCITING TECHNOLOGY LLC            Topic: AF19AT006

    The imaging vibrometer development will be based on a representative Directed Energy (DE) aperture assumed to be 30 cm. This effort will provide both DE and Combat IDentification (CID), modes for relative short range DE operations, and an ISR Combat IDentification (CID) mode for operation at extended range. A combination of analytic derivations and wave optics simulations will be used to define a ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government