You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Coupled Cluster Methods for Multi-Reference Applications

    SBC: ACES QC, LC            Topic: AF09BT40

    The objective of Phase I is to identify the strengths and weaknesses of the various multi-reference coupled-cluster (MRCC) methods that have been proposed for the description of molecular states depending upon near degeneracies and non-dynamic electron correlation. Such effects are encountered in bond breaking, at transition states, for complex open shell systems like transition metal atoms, and f ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Thermoelectric material-coated carbon nanotubes as high conductivity thermal interface materials

    SBC: ADA Technologies, Inc.            Topic: AF09BT22

    The ever-decreasing size of the electronic microchips and the ever-increasing density of electronic components required to support future Air Force platforms are creating the problem of substantial localized heat generation that can impair component operation. State of the art thermal interface materials (TIMs), that are used to dissipate heat from the source to the spreader in a microchip, are se ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Meshfree-Based Fracture Evaluation and Design Tool for Welded Aluminum Ship Structures

    SBC: Advanced Dynamics, Inc.            Topic: N10AT041

    The aluminum alloys have low density, relatively high strength, and high strength-to-weight ratio, which brings some major advantages in marine structure design, fabrication, and operations. However, marine ships are subjected to a complex and severe loading, and the typical failure mode of aluminum under extreme dynamics loading such as wave slamming and high velocity impact is ductile fracture. ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Deterministic and Statistical Characterization of the Impact of Control Surface Freeplay on Flutter and Limit-Cycle Oscillation (LCO) using Efficient

    SBC: Advanced Dynamics, Inc.            Topic: N10AT003

    Research is proposed for the development and implementation of state of the art computational and experimental tools for the investigation of the impact of control surface freeplay on the flutter and limit cycle oscillation characteristics of two-dimensional and three-dimensional wings in subsonic and transonic flow. Highly efficient and accurate aeroelastic simulation tools will be constructed ba ...

    STTR Phase I 2010 Department of DefenseNavy
  5. Multiscale Modeling and Analysis of Foreign Object Damage in Ceramic Matrix Composites with the Material Point Method

    SBC: Advanced Dynamics, Inc.            Topic: N10AT010

    This Small Business Technology Transfer Phase I project is aiming at developing and implementing a multiscale composite model to predict the ceramic matrix composite (CMC) response to the impact loading by foreign objects. In particular, the physics-based model will be applied to describe the multiscale foreign object damage (FOD) phenomena of CMCs due to the complex nature of impact dynamics coup ...

    STTR Phase I 2010 Department of DefenseNavy
  6. STOCHASTIC MUTISCALE/MULTISTAGE MODELING OF ENGINE DISKS

    SBC: Advanced Dynamics, Inc.            Topic: N10AT028

    Turbine disks are amongst the most critical components in aero- and naval-vessel engines. They operate in a high pressure and temperature environment requiring demanding properties. Nickel-based supperalloys which have high creep and oxidation resistance at high temperatures are widely used as the material of turbine disks. The elevated-temperature strength of this supperalloy and its resistance t ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Terahertz Focal Plane Arrays

    SBC: Aegis Technologies Group, LLC, The            Topic: AF09BT33

    Recent advances in THz-source stability, power and practicality have opened the door for active THz imaging in both commercial and military settings. AEgis is teaming with U Buffalo to develop a THz detection device that utilizes classical rectification effects in semiconductor point contacts (SPCs) to achieve response in the 1 to 10 THz range and is capable of operating at temperatures over 150 K ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Recovery Act- Scale-up of the Nanomanufacturing of Coated Powders for Superior Battery Electrode Materials

    SBC: ALD NANOSOLUTIONS, INC            Topic: 09b

    There is significant opportunity for energy efficiency improvements in the industrial and manufacturing sectors in the U.S., both from the production and consumption perspective. Higher energy density battery materials will play a role in both, through improved storage of electricity from renewable sources, the enabling of electric vehicles, and through the development of longer lasting, higher po ...

    STTR Phase I 2010 Department of Energy
  9. Enhanced Carbon Nanotube Ultracapacitors

    SBC: Amtec Corporation            Topic: AF09BT05

    The mission of this proposed research is to develop ultracapacitors (also known as electrochemical or supercapacitors) to address an array of military applications. These applications include pulsed power for directed-energy and kinetic-energy weapons, sensors, and power supplies and control systems for aircraft and spacecraft. The proposed innovation employs carbon nanotubes (CNTs) coated with p ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Development of Magnetostrictive Energy Harvesting of Mechanical Vibration Energy

    SBC: Applied Physical Sciences Corp.            Topic: N10AT020

    Applied Physical Sciences and the University of Maryland propose to develop a magnetostrictive transducer that harvests electrical energy from shipboard machinery while simultaneously suppressing vibration to improve the ship’s stealth characteristics and thereby improving the performance of hull mounted sonar systems. Analysis performed during the Base Effort will provide an initial design spec ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government