You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Scalable Manufacturing of Functional Yarns for Textile Energy Storage

    SBC: STORAGENERGY TECHNOLOGIES INC            Topic: A17AT013

    To further accelerate the commercialization process of our supercapactior yarns, we plan to further lower the production cost, enhance our yearn performance and optimize customer experience via materials and process engineering and innovative platform development. The major deliverable of this sequential Phase II project is to demonstrate the throughput capacity of a large area supercapactior fabr ...

    STTR Phase II 2019 Department of DefenseArmy
  2. AIMSMART: Adaptive, Interactive MDA Semantic Model-based Articulation

    SBC: CYCORP, INC.            Topic: MDA11T003

    We will develop automatic ontology-aligning software, leveraging the enormous existing Cyc AI system to drive the formulation and ranking (pro/con argumentation) of hypotheses about term-term relationships, especially where the relationship is not simple 1-to-1 correspondence. Multiple Cyc micro-theories (contexts) will be created, to hold incommensurate alternative mappings, and logical conseque ...

    STTR Phase II 2013 Department of DefenseMissile Defense Agency
  3. Additive Manufactured Smart Structures with Discrete Embedded Sensors

    SBC: 3DFlexible Inc            Topic: A17AT024

    Recent advances in 3D structure printing and 3D direct printed electronics have widened the scope of possibilities for the Internet of Things (IoT). New near room temperature 3D direct ink writing (DIW) additive manufacturing (AM) printing processes allow many different type of sensors and they can be embedded anywhere in a structure, which offers several benefits. 1. Protection: sensors face degr ...

    STTR Phase II 2019 Department of DefenseArmy
  4. Thin Film Deposition of Highly Conductive Metals for Sensor Applications- Phase II

    SBC: SUMMIT INFORMATION SOLUTIONS, INC.            Topic: A17AT001

    Deposition of highly conductive, continuous thin film metals has proven to be a significant challenge. There are several techniques that allow deposition of these metals, but their application is limited to planar surfaces and only offer complete line of sight deposition. During a recent Phase I STTR project, Summit Information Solutions, Inc. (Summit), in partnership with University of Alabama in ...

    STTR Phase II 2019 Department of DefenseArmy
  5. Innovative Methodologies for Manufacturing of Lethality Test Articles

    SBC: MRL MATERIALS RESOURCES LLC            Topic: MDA17T001

    Metallic additive manufacturing (AM) is an attractive technology for the production of lethality test articles due to the potential for significantly reduced lead time and manufacturing cost. However, in order to be effective in providing accurate lethality data, the properties of the AM material have to match closely the properties of conventionally manufactured alloys found in real threat target ...

    STTR Phase II 2019 Department of DefenseMissile Defense Agency
  6. Multi-Physics Analysis Tool for High-Energy Gas Lasers

    SBC: Material Flow Solutions, Inc.            Topic: MDA16T001

    Based on the results of our Phase I work, one significant barrier to optimizing battery performance lies in understanding the relationship between bulk solids and particle flow properties and the flow into the die. Our hypothesis: an increase in quality batteries production can be achieved if powder preparation process can be optimized and the die filling process controlled. We feel that control o ...

    STTR Phase II 2019 Department of DefenseMissile Defense Agency
  7. Lightweight Structural Components of a Missile Body

    SBC: TEXAS RESEARCH INSTITUTE , AUSTIN, INC.            Topic: MDA17T004

    A significant weight reduction on missile platforms could increase maneuverability of the payload and allow more capable payloads. High temperature composite materials offer the means by which low cost and lighter weight missile structures can be achieved. Approved for Public Release 19-MDA-10203 (4 Sep 19)

    STTR Phase II 2019 Department of DefenseMissile Defense Agency
  8. THz and Sub-THz MEMS-Fabricated Klystron Amplifier

    SBC: INNOSYS, INC.            Topic: A09AT016

    InnoSys and Purdue University will continue to research and develop robust Phase I approaches for building, implementing and demonstrating a new class of terahertz (THz) vacuum electronic device (VED) power amplifiers and power sources at frequencies in the range of 0.3-3.0 THz (the THz regime) employing advanced micro electro mechanical system (MEMS) and vacuum technology and processes. There is ...

    STTR Phase II 2010 Department of DefenseArmy
  9. Dilution refrigerator technology for scalable quantum computing

    SBC: High Precision Devices, Inc.            Topic: ARMY08T020

    Currently large capacity cryostats, capable of hosting experiments for many qubits, require expensive and hard to obtain liquid cryogens. A few small cryo-free systems exist but they are non-ideal for this use. An opportunity exists for a large scale, c

    STTR Phase II 2010 Department of DefenseArmy
  10. Dilution refrigerator technology for scalable quantum computing

    SBC: High Precision Devices, Inc.            Topic: A08T020

    Currently large capacity cryostats, capable of hosting experiments for many qubits, require expensive and hard to obtain liquid cryogens. A few small cryo-free systems exist but they are non-ideal for this use. An opportunity exists for a large scale, c

    STTR Phase II 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government