You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Comprehensive Web Infrastructure for Standardizing, Storing, and Launching Density Functional Calculations of Materials and Chemical Compounds

    SBC: Citrine Informatics, Inc.            Topic: 9a

    Density functional theory is used by many researchers funded by the Department of Energy as a method for predicting the behavior of chemicals and materials used in energy applications. However, results of these calculations are often not standardized and, even when they are, expert-level understand of the methods is needed in order to properly perform a simulation. The energy research community a ...

    STTR Phase II 2016 Department of Energy
  2. A Coupled System for Predicting SPE Fluxes

    SBC: PREDICTIVE SCIENCE INCORPORATED            Topic: T602

    Solar Particle Events (SPEs) represent a major hazard for extravehicular maneuvers by astronauts in Earth orbit, and for eventual manned interplanetary space travel. They can also harm aircraft avionics, communication and navigation. We propose to develop a system to aid forecasters in the prediction of such events, and in the identification/lengthening of "all clear" time periods when there is ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  3. Acoustic Intercept Receiver for Naval Special Warfare Undersea Vehicles

    SBC: INFORMATION SYSTEMS LABORATORIES INC            Topic: N09T012

    Information Systems Laboratories (ISL) and Florida Atlantic University (FAU) propose to develop and test a system that uses existing signal processing algorithms coupled with innovative construction technology developed ISL under our E-Field sensor programs and FAU under UUV programs. The Challenge is to develop a small system package with the capability to intercept active threat emissions early ...

    STTR Phase II 2010 Department of DefenseNavy
  4. Active Combustion Control (ACC) of Augmentor Dynamics

    SBC: Knite Inc            Topic: N14AT004

    The proposed research for Phase II of topic N14A-T004, Active Combustion Control of Augmentor Dynamics, has the objective of maturing the Augmentor Screech Active Suppression technology demonstrated successfully during Phase I by Knite, Inc. and the University of Cincinnati Gas Dynamics and Propulsion Laboratory. The work plan is intended to provide continued progress focusing on increasing knowle ...

    STTR Phase II 2016 Department of DefenseNavy
  5. Acute-infarct selective cardiac MRI contrast agent

    SBC: ELGAVISH PARAMAGNETICS, INC.            Topic: NHLBI

    DESCRIPTION provided by applicant The overall goal of this project is to demonstrate the ability of our acute myocardial infarct selective paramagnetic contrast agent Gadolinium ABE DTTA to differentiate between acute and chronic infarcts in a reliable manner using contrast enhanced magnetic resonance imaging ceMRI In our Phase I data we have shown that Gd ABE DTTA exclusively highlight ...

    STTR Phase II 2010 Department of Health and Human ServicesNational Institutes of Health
  6. Adaptive and Smart Materials for Advanced Manufacturing Methods

    SBC: NEXTGEN AERONAUTICS, INC.            Topic: AF17AT018

    The focus of this STTR program is the development and maturation of a novel, room-temperature process to fabricate multi-layer metal-polymer (including PVDF and other smart materials) composites in an additive approach. This overcomes the limitation arising from the large temperature difference between metal and polymer manufacturing processes, and presents a new technology for additive manufactur ...

    STTR Phase II 2019 Department of DefenseAir Force
  7. Adaptive Integrated Multi-Modal Sensing Array

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: AF08BT02

    Nanoscale infrared detectors are emerging as a potentially powerful alternative to traditional infrared detector technologies. The University of New Mexico has developed dots in a double well (DDWELL) quantum dot infrared photodetectors which have a spectral responsivity that can be tuned by controlling the bias voltage applied. In this Phase II effort, Polaris Sensor and UNM would fabricate a g ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. Advance Additive Manufacturing Method for SRF Cavities of Various Geometries

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: 34a

    Current state-of-the-art SRF accelerating cavities require the use of many complex and expensive techniques throughout their fabrication/performance cycle. This project will utilize a novel Additive Manufacturing (AM) process to produce nearly monolithic SRF niobium cavities of arbitrary shape with features such as optimized wall thickness and/or integrated stiffeners, greatly reducing the cost a ...

    STTR Phase II 2013 Department of Energy
  9. Advanced Algorithms For A Combined Chem-Bio Standoff Sensor

    SBC: SOUTH BAY SCIENCE & TECHNOLOGY CORP.            Topic: ARMY08T026

    Frequency Agile Laser sensor has shown great promise in standoff detection of chemical and biological agents in the long wave infrared (LWIR) portion of the spectrum through several field trials in recent years. The fact that it is now possible to perform

    STTR Phase II 2010 Department of DefenseArmy
  10. Advanced Algorithms For A Combined Chem-Bio Standoff Sensor

    SBC: SOUTH BAY SCIENCE & TECHNOLOGY CORP.            Topic: A08T026

    Frequency Agile Laser sensor has shown great promise in standoff detection of chemical and biological agents in the long wave infrared (LWIR) portion of the spectrum through several field trials in recent years. The fact that it is now possible to perform

    STTR Phase II 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government