You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. A Coupled System for Predicting SPE Fluxes

    SBC: PREDICTIVE SCIENCE INCORPORATED            Topic: T602

    Solar Particle Events (SPEs) represent a major hazard for extravehicular maneuvers by astronauts in Earth orbit, and for eventual manned interplanetary space travel. They can also harm aircraft avionics, communication and navigation. We propose to develop a system to aid forecasters in the prediction of such events, and in the identification/lengthening of "all clear" time periods when there is ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  2. Active Vibration Isolation System for Mobile Launch Platform Ground Support Equipment

    SBC: Balcones Technologies LLC            Topic: T6

    During our Phase I STTR effort, Balcones Technologies, LLC and The University of Texas Center for Electromechanics (CEM) successfully achieved all Phase I objectives and developed a concept design for an active Vibration Isolation System (VIS) that fully meets all requirements defined or implied in STTR 2007-1 Subtopic T6.02. Now the Balcones Technologies - CEM team proposes to develop, test, and ...

    STTR Phase II 2010 National Aeronautics and Space Administration
  3. Adaptive Resource Estimation and Visualization for Planning Robotic Missions

    SBC: Traclabs Inc.            Topic: T1101

    NASA's future human exploration missions will include remotely operated rovers performing surface exploration and science, as well as free-flyers to reduce the need for human Extra Vehicular Activity. Technologies are needed for remote operation and supervised autonomy of robots. Consider the Resource Prospector (RP) lunar mission. For RP it will be necessary to accomplish as much as possible in t ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  4. Advanced Gas Sensing Technology for Space Suits

    SBC: Intelligent Optical Systems, Inc.            Topic: T601

    The gas sensor in the PLSS of the ISS EMU will meet its projected life in 2020, and NASA is planning to replace it. At present, only high TRL devices based on infrared absorption are candidate replacements, because of their proven long-term stability, despite their size and power consumption and failures in the presence of liquid water. No current compact sensor has the tolerance for liquid water ...

    STTR Phase II 2016 National Aeronautics and Space Administration
  5. Advanced Gas Sensing Technology for Space Suits

    SBC: Intelligent Optical Systems, Inc.            Topic: T6

    The gas sensor in the PLSS of the ISS EMU will meet its projected life in 2020, and NASA is planning to replace it. At present, only high TRL devices based on infrared absorption are candidate replacements, because of their proven long-term stability, despite their size and power consumption and failures in the presence of liquid water. No current compact sensor has the tolerance for liquid water ...

    STTR Phase II 2019 National Aeronautics and Space Administration
  6. Advanced Structural Health Monitoring

    SBC: Texas Research Institute, Austin, Inc.            Topic: T12

    Frequency selective surfaces (FSSs) are periodic arrays of conductive elements/patches that cause a particular reflection response when illuminated with high frequency electromagnetic energy. nbsp;These arrays arenbsp;used for high frequency filters and in antenna applications.nbsp; We propose to use FSSs as multi-functional sensors. nbsp;FSS sensors are unpowered, low-profile (thin), wireless and ...

    STTR Phase II 2019 National Aeronautics and Space Administration
  7. An Additive Manufacturing Technique for the Production of Electronic Circuits

    SBC: Morningbird Media Corporation            Topic: T12

    Under the support of a FY 2016 NASA Phase I Small Business Technology Transfer (STTR) contract (NASA contract number NNX16CM40P), Morningbird Media Corporation in collaboration with Alabama A&M University Research, Innovation in Science and Engineering (AAMU-RISE) Foundation, has devised a unique method for an additive manufacturing technique for the direct 3D printing of functional electronics. T ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  8. An End-To-End Microfluidic Platform for Engineering Life Supporting Microbes in Space Exploration Missions

    SBC: HJ Science & Technology, Inc.            Topic: T6

    HJ ScienceTechnology (HJST) and Lawrence Berkeley National Laboratory (LBNL) propose a highly integrated, programmable, and miniaturized microfluidic automation platform capable of running rapid and complex synthetic biology and bioengineering processes for engineering life supporting microbes in space exploration missions. Our approach combines the microfluidic automation technology of HJST with ...

    STTR Phase II 2019 National Aeronautics and Space Administration
  9. An Ultrasonic Wireless Sensor Network for Data Communication and Structural Health Monitoring

    SBC: X-Wave Innovations, Inc.            Topic: T12

    Sensor networks embedded on structures, such as pipes, bridges, railways, aircraft wings and fuselage, among others, are required to transfer data related to the health of the structure. This data is typically sent to a central location where it can be processed, displayed, and analyzed. Typical Structural Health Monitoring (SHM) uses embedded ultrasonic transducers exclusively for non-destructive ...

    STTR Phase II 2019 National Aeronautics and Space Administration
  10. Anytime Summarization for Remote Robot Operations

    SBC: Traclabs Inc.            Topic: T103

    NASA plans to use intelligent planetary rovers to improve the productivity and safety of human explorers. A key challenge in using robots for human exploration is orienting remote personnel about robot operations, as latency and communication constraints make eyes-on monitoring impractical. Summary measures are needed to identify what progress the robot has made and, when progress is impeded, to i ...

    STTR Phase II 2013 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government