You are here
Award Data
The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.
Download all SBIR.gov award data either with award abstracts (290MB)
or without award abstracts (65MB).
A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.
-
Atomic Triaxial Magnetometer
SBC: Vescent Photonics LLC Topic: N19AT006Vescent Photonics and MIT Lincoln Labs (MIT-LL) propose to develop a quantum-based vector magnetometer with low size, weight, power, and cost (SWaP+C) for Navy applications. The proposed system will rely on probing magnetically-sensitive, atomic-like transitions of nitrogen-vacancy (NV) centers in diamond to provide stable, high-bandwidth readout of the vector magnetic field with sub-picotesla sen ...
STTR Phase I 2019 Department of DefenseNavy -
Quench Monitoring and Control System for High-Temperature Superconducting Coils
SBC: Advanced Conductor Technologies LLC Topic: N19AT016The Navy has been developing superconducting systems, based on high-temperature superconductors (HTS), for future use on Navy ships. One of the challenges associated with superconducting magnets is the possibility of a quench, which is an event where a local hot spot develops within the superconductor that quickly spreads throughout the device, driving it into its normal and dissipative state. Sen ...
STTR Phase I 2019 Department of DefenseNavy -
Scalable Manufacturing of Composite Components Using Nanostructured Heaters
SBC: Metis Design Corporation Topic: N18BT031Manufacturing of structural composites traditionally employs autoclaves to achieve high quality parts, including high fiber-volume-fractions and low porosity. A laminate comprised of stacked prepreg plies are cured under a vacuum in addition to ~7 bar of pressure to prevent formation of voids, particulalry in interlaminar (inter-sheet/ply) regions. However, manufacturing composites within an autoc ...
STTR Phase I 2019 Department of DefenseNavy -
Carbon Nanotube-Based Heater Coatings for Processing of Thermosetting and Thermoplastic Composites
SBC: MAINSTREAM ENGINEERING CORPORATION Topic: N18BT031For this research program, Mainstream will collaborate with Colorado State University (CSU) to develop a nanostructured heater capable of curing aerospace grade composites out-of-autoclave (OOA). The use of autoclaves is the primary cost driver in composite manufacturing due to size limitations, long processing times, and inefficient energy usage. Therefore, the Navy is looking to develop a nanost ...
STTR Phase I 2019 Department of DefenseNavy -
Decision Support for Operators of Fully Autonomous Systems using RESTORE: Robust Execution System for Trusted Operation in Relevant Environments
SBC: Scientific Systems Company Inc. Topic: N18BT032SSCI and MIT (Prof. Julie Shah) propose to develop and test a system that provides real-time assurance and trust in decisions made by autonomous collaborating vehicles. The proposed system is referred to as the RESTORE and represents a decision support tool which facilitates decision making by the operator in cases when decisions by the Collaborative Autonomy (CA) system results in deviations from ...
STTR Phase I 2019 Department of DefenseNavy -
Optimized Higher Power Microwave Sources
SBC: Metamagnetics Inc. Topic: N19AT001HPM (high power microwave) weapons could disable vehicles, enable vehicle recovery, and reduce collateral damage. Metamagnetics, in partnership with Professor Jane Lehr (University of New Mexico), and General Atomics propose a completely solid-state HPM system based on their work in Gyromagnetic Nonlinear Transmission Lines (gNLTL) and compact High-Gain Slotted Waveguide Antennas. The system will ...
STTR Phase I 2019 Department of DefenseNavy -
Interlaminar Reinforcement of Composite Rotorcraft Components via Tailored Nanomorphologies of Aligned Carbon Nanotubes (A-CNTs)
SBC: Metis Design Corporation Topic: N19AT003Composites are often used in aerospace applications due to their superior specific strength and stiffness properties, as well as their resistance to fatigue and corrosion. In particular for rotorcraft, composites offer additional benefits for their versatility in tailoring material properties for such components as rotor blades. However, rotors introduce additional challenges by including multiple ...
STTR Phase I 2019 Department of DefenseNavy -
Targeted Enhancement of Critical Composite Interfaces using Vertically Aligned Carbon Nanotubes
SBC: N12 TECHNOLOGIES, INC. Topic: N19AT003Vertically-aligned carbon nanotubes (VACNTs) will be selectively applied at interfaces in laminated composite structures to effect locally the mechanical properties that limit rotorcraft structures, such as fatigue and damage tolerance. In Phase I this work will quantify these effects in CFRP and CFRP/GFRP hybrid coupons. The VACNT material will be transferred directly onto prepreg plies, but also ...
STTR Phase I 2019 Department of DefenseNavy -
Catastrophic Optical Damage Mitigation in Quantum Cascade Lasers by Facet Disordering
SBC: N2 Biomedical, LLC Topic: N19AT004Quantum cascade laser optical output power is limited by laser facet catastrophic optical damage (COD). In edge-emitting semiconductor lasers COD is a thermal runaway process wherein the front facet of the laser heats under high power operation. This facet heating reduces the semiconductor bandgap which increases the optical absorption and also increases the electrical injection current in the fac ...
STTR Phase I 2019 Department of DefenseNavy -
Process to Mitigate Catastrophic Optical Damage to Quantum Cascade Lasers
SBC: Pendar Technologies, LLC Topic: N19AT004In this program, we will develop solutions to optimize QCL fabrication processes, such as facet passivation and high thermal conductivity coatings, that will mitigate the reliability issues for high power QCL applications. In phase I, we will first evaluate all concepts and efforts that have been largely investigated for GaAs based high power diode lasers and transfer the knowledge to InP based QC ...
STTR Phase I 2019 Department of DefenseNavy