You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. CIM-MIAS (Cyber Information Management and Mission Impact Analysis System)

    SBC: Modus Operandi, Inc.            Topic: AF18CT002

    The DoD lacks an multi-level security (MLS) cyber information management (CIM) system capable of collecting, sharing and disseminating cyber information containing threats, system vulnerabilities and mission impacts and risks for systems operating at multiple security levels. A system that can securely collect and persist this information from various systems operating at various security levels i ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. Quantum Sensor for Direction Finding and Geolocation

    SBC: HYPRES, INC.            Topic: AF17AT028

    Innovations in materials and nanoelectronics have made it possible to measure electromagnetic signals with unprecedented precision and near quantum limited sensitivity. Magnetic field sensors such as superconducting quantum interference devices (SQUIDs) have been theoretically explored by the Air Force for high frequency direction finding (HFDF) applications. The objective of this project is to fa ...

    STTR Phase II 2019 Department of DefenseAir Force
  3. Fast Response Heat Flux Sensors and Efficient Data Reduction Methodology for Hypersonic Wind Tunnels

    SBC: Innoveering, LLC            Topic: AF17AT001

    There is a DoD need for the development of robust sensors to obtain temporally and spatially resolved surface temperature and heat flux measurements on test articles in blowdown and continuous hypersonic wind tunnels. These micro-heat flux sensors are required in order to better understand the state of the boundary layer of a hypersonic vehicle; to better understand boundary layer instabilities; a ...

    STTR Phase II 2019 Department of DefenseAir Force
  4. Electronically Dimmable Eye Protection Devices (EDEPD)

    SBC: Alphamicron, Inc.            Topic: AF18BT003

    The team of AlphaMicron Inc. and Kent State University proposes a novel LC technology, the dynamic polarizer, as a light control system for Battlefield Airmen and Pilots. The dynamic polarizer technology shares the performance capabilities of AlphaMicron’s e-Tint LC light control technology: instantaneously fails-to-clear, millisecond switching times, and customizable tint and color. Howeve ...

    STTR Phase I 2019 Department of DefenseAir Force
  5. Multiphysics Modeling of Dynamic Combustion Processes Using Pareto-Efficient Combustion Framework

    SBC: STREAMLINE NUMERICS, INC.            Topic: AF18BT010

    The objective is to develop zonal multi-physics capability for turbulent combustion simulations. The foundation of the proposed work is a novel Pareto-Efficient Combustion (PEC) framework for fidelity-adaptive combustion modeling. The PEC model utilizes a combustion submodel assignment, combining the low-cost flamelet-based models with the more expensive finite rate chemistry models where necessar ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. PRIME: PRimary Integration and Maturation of EGS

    SBC: THE DESIGN KNOWLEDGE COMPANY            Topic: AF18BT012

    Legacy satellite command and control capabilities and their related telemetry operate in a largely stove piped framework. Satellites are still commanded, controlled, and communicated with their ground station in a specific constellation structure. Each ground station is unique to a given constellation and the communications and telemetry are aligned to the specific constellation, underscoring an o ...

    STTR Phase I 2019 Department of DefenseAir Force
  7. Rapid Nondestructive Inspection of Traditionally Uninspectable Adhesively-Filled Composite Joints

    SBC: Thermal Wave Imaging Inc            Topic: AF18BT016

    NDI of composite Pi/T-Joints presents significant challenges to existing inspection technologies resulting in a barrier to implementation in production. We will investigate feasibility of developing an active thermography NDI solution for real-world inspection of composite structures with T / Pi- joints during the manufacturing process (both green and cured states). Based on the extensive experien ...

    STTR Phase I 2019 Department of DefenseAir Force
  8. Remote Sensing System for Monitoring Cardiopulmonary Signals

    SBC: VIRTUAL EM INC.            Topic: AF19AT003

    Virtual EM and Case Western Reserve University are teaming to propose a standoff cardiopulmonary sensing technology to aid remote monitoring of airman and others ' physiological state of health both in the field and in the office environments. While the pulmonary sensing unit could be operated meters away, the cardio signals are picked up in closer proximity to the body.

    STTR Phase I 2019 Department of DefenseAir Force
  9. Vibration imaging for the characterization of extended, non-cooperative targets

    SBC: Guidestar Optical Systems, Inc.            Topic: AF19AT006

    Locating objects that vibrate is a way to discern potential threats and locate targets. However, current vibrometry technology typically measures only the global vibration of target and cannot create an extended spatial measurement of the vibration profile of the target. These solutions cannot identify what the target is, nor can they locate potential weak spots on the target, because they lack sp ...

    STTR Phase I 2019 Department of DefenseAir Force
  10. Optimization of Sodium Guide Star Return using Polarization and/or Modulation Control

    SBC: Applied Optimization, Inc            Topic: AF19AT008

    The research objective of the proposed work is to increase the efficiency of the laser return of a Sodium Guide Star Laser (SGSL) reflected off the sodium layer for increased reliability and applicability of the artificial guide star technique. During Phase I, we will demonstrate the concept of maximizing the SGSL signal returns using numerical simulations that account for the effects of atmospher ...

    STTR Phase I 2019 Department of DefenseAir Force
US Flag An Official Website of the United States Government