You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Particle Flow Physics Modeling for Extreme Environments

    SBC: CFD Research Corporation            Topic: T403

    The liberation of particles induced by rocket plume flow from spacecraft landing on unprepared regolith of the Moon, Mars, and other destinations poses high mission risks for robotic and human exploration activities. This process occurs in a combination of "extreme environments" that combine low gravity, little or no atmosphere, with rocket exhaust gas flow that is supersonic and partially rarefie ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  2. Local Navigation in GNSS and Magnetometer-Denied Environments

    SBC: PRIORIA ROBOTICS HOLDINGS, INC.            Topic: T501

    The proposed solution exploits recent advances in computer vision to conceive of a single-camera + gyro + accelerometer vision-based navigation solution such that the processing will be lightweight (requiring only a single optical flow sample per frame). Known landmarks (natural or artificial) will have absolute positions known to planetary exploration worker robots. The worker robot can identif ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  3. Autonomous Navigation in GNSS-Denied Environments

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: T501

    Aurora proposes to develop a vision-based subsystem for incorporation onto Mars vehicles in the air (VTOL) and on the ground. NOAMAD will be an embedded hardware device with associated firmware for payloadlimited UAVs, performing autonomous navigation, obstacle avoidance, guidance using bio-inspired methods, and communication of information between agents within the autonomous team. NOAMAD will tr ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  4. High-Fidelity Prediction of Launch Vehicle Lift-off Acoustic Environment

    SBC: CFD Research Corporation            Topic: T101

    Launch vehicles experience extreme acoustic loads during liftoff driven by the interaction of rocket plumes and plume-generated acoustic waves with ground structures. Currently employed predictive capabilities to model the complex turbulent plume physics are too dissipative to accurately resolve the propagation of acoustic waves throughout the launch environment. Higher fidelity liftoff acoustic a ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  5. High Performance Multiphase Combustion Tool Using Level Set-Based Primary Atomization Coupled with Flamelet Models

    SBC: STREAMLINE NUMERICS, INC.            Topic: T101

    The innovative methodologies proposed in this STTR Phase 1 project will enhance Loci-STREAM which is a high performance, high fidelity simulation tool already being used at NASA for a variety of CFD applications. This project will address critical needs in order to enable fast and accurate simulations of liquid space propulsion systems (using propellants such as LOX, LCH4, RP-1, LH2, etc.). The pr ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  6. Novel Near-to-Mid IR Imaging Sensors Without Cooling

    SBC: BOSTON APPLIED TECHNOLOGIES, INCORPORATED            Topic: T802

    Boston Applied Technologies, Inc (BATi), together with Kent State University (KSU), proposes to develop a high sensitivity infrared (IR) imaging sensor without cooling, which covers a broad band from near infrared (NIR) to mid-infrared (mid-IR). It is based on a specific transparent functional material developed at BATi that has excellent pyroelectric effect, over strong absorption at NIR, mid-IR ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  7. Power Generating Coverings and Casings

    SBC: Streamline Automation, LLC            Topic: T301

    Advances in structured heterogeneity together with nanomaterials tailoring has made it possible to create thermoelectrics using high temperature, polymer composites. While such thermoelectrics do not have the capability to approach the efficiency of top performing ceramic modules such as BiTe, they do provide two unique aspects of use in energy scavenging: the ability to cover large areas easily, ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  8. MEMS Based Solutions for an Integrated and Miniaturized Multi-Spectrum Energy Harvesting and Conservation System

    SBC: Radiance Technologies, Inc.            Topic: T301

    The objective of this proposal is to develop three unique energy harvesting technologies utilizing our existing research strengths that will be of interest and utility to NASA applications and environmental conditions. By developing multiple technologies, NASA will be able to harvest energy from multiple waste energy sources, namely environmental vibrations, thermal energy, and solar flux. These d ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  9. Innovative Solid State Lighting Replacements for Industrial and Test Facility Locations

    SBC: Energy Focus, Inc.            Topic: T1002

    The proposed innovation is the replacement of existing test stand and parking lot fixtures with current SSL LED technology. The replacement fixtures will reduce energy consumption, generate less heat and provide maintenance free operation for over 50,000 hours. An explosion-proof fixture is capable of containing an internal combustion event without allowing flames or hot gasses to escape to the s ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  10. Magnetically Modified Asymmetric Supercapacitors

    SBC: Giner, Inc.            Topic: T601

    This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life. Supercapacitors that utilize an aqueous electrolyte are limited to a maximum voltage of 1 volt due to the decomposition of water. Methods used to increase voltage include use of an organic electrolyte, which introduces additional comp ...

    STTR Phase I 2010 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government