You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. X-ray Cinematography for Explosive Events

    SBC: DIVERSIFIED TECHNOLOGIES, INC.            Topic: AF18BT014

    Diversified Technologies, Inc. (DTI) proposes to develop a Multiple Pulse flash X-ray source which can be used to make high resolution X-ray movies of explosive and ballistic tests. The new source will allow researchers to capitalize on recent advances in very high speed cameras which allow high resolution images with many frames. DTI will extend our world-class pulsed power capabilities to this c ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. CIM-MIAS (Cyber Information Management and Mission Impact Analysis System)

    SBC: Modus Operandi, Inc.            Topic: AF18CT002

    The DoD lacks an multi-level security (MLS) cyber information management (CIM) system capable of collecting, sharing and disseminating cyber information containing threats, system vulnerabilities and mission impacts and risks for systems operating at multiple security levels. A system that can securely collect and persist this information from various systems operating at various security levels i ...

    STTR Phase I 2019 Department of DefenseAir Force
  3. Portable Bioprinted Organoids for Physiological Monitoring

    SBC: CFD Research Corporation            Topic: AF19AT002

    hazardous chemicals such as JP8, chromium, and byproducts of led-free frangible ammunition and to hazardous environments. Of the many dangers Airmen face, the hypoxia-like unexplained physiological events pilots face are some of the most dangerous and elusive. Current wearable sensors cannot decouple complex, interdependent in vivo response. We propose to develop (design, fabricate, test, and demo ...

    STTR Phase I 2019 Department of DefenseAir Force
  4. Carbon nanotube coatings on electrochemical textured surfaces for advanced adsorptive baffles

    SBC: Faraday Technology, Inc.            Topic: MDA18T003

    This proposed STTR program addresses the challenge of developing advanced absorptive baffles to minimize stray and reflected light across the visible and infrared wavebands for exo-atmospheric optical sensors and seeker telescopes. To achieve this goal Faraday Technology and Pacific Northwest National Laboratory will develop electrochemically textured pyramidal surfaces with CNT black coatings as ...

    STTR Phase I 2019 Department of DefenseMissile Defense Agency
  5. Novel Approaches for Eliminating Bias Drift in Infrared Focal Plane Arrays

    SBC: Copious Imaging LLC            Topic: MDA18T004

    The objective of this proposal is to eliminate reliance on integrated non-uniformity correction hardware in electro-optical/ infrared (EO/IR) sensors to reduce sensor size, weight, power, and cost (SWaP-C), simplify maintenance and integration, and streamline mission continuity of operations. The Digital-pixel Readout Integrated Circuits (DROIC) is an enabling technology for future sensors built f ...

    STTR Phase I 2019 Department of DefenseMissile Defense Agency
  6. Atomic Triaxial Magnetometer

    SBC: Vescent Photonics LLC            Topic: N19AT006

    Vescent Photonics and MIT Lincoln Labs (MIT-LL) propose to develop a quantum-based vector magnetometer with low size, weight, power, and cost (SWaP+C) for Navy applications. The proposed system will rely on probing magnetically-sensitive, atomic-like transitions of nitrogen-vacancy (NV) centers in diamond to provide stable, high-bandwidth readout of the vector magnetic field with sub-picotesla sen ...

    STTR Phase I 2019 Department of DefenseNavy
  7. Quench Monitoring and Control System for High-Temperature Superconducting Coils

    SBC: Advanced Conductor Technologies LLC            Topic: N19AT016

    The Navy has been developing superconducting systems, based on high-temperature superconductors (HTS), for future use on Navy ships. One of the challenges associated with superconducting magnets is the possibility of a quench, which is an event where a local hot spot develops within the superconductor that quickly spreads throughout the device, driving it into its normal and dissipative state. Sen ...

    STTR Phase I 2019 Department of DefenseNavy
  8. Ultra-fast Multiframe X-ray Imaging System for Explosive Events

    SBC: Radiation Monitoring Devices, Inc.            Topic: AF18BT014

    Measuring the response of explosives to a variety of thermal and mechanical inputs is important to understand and ultimately predict the reaction violence of an explosive in an accident scenario. Technically, there are many challenges to overcome in observing explosives response. For instance, secondary high explosives are heterogeneous and optically opaque and often need to be confined in metal c ...

    STTR Phase I 2019 Department of DefenseAir Force
  9. SWAT- Scalable W(R)ubber through Advanced Technology

    SBC: EnergyEne Inc.            Topic: ST18C001

    Opportunity: Guayule, a US native plant, is the only alternate rubber crop with an established, mechanized, agronomic system. Problem: Low rubber yields and lack of effective resin and bagasse coproduct valorization, have prevented widespread adoption by American farmers and processors. Rubber is only made when the cytoplasmic monomer pool (isopentenyl-pyrophosphate; IPP) is larger than that requi ...

    STTR Phase I 2019 Department of DefenseDefense Advanced Research Projects Agency
  10. Machine Learning and Data Fusion platform for Phenotype-based Pathogen Identification

    SBC: Triton Systems, Inc.            Topic: ST18C002

    Conventional methods for detecting pathogens, which are based on culturing the microorganism, are time-consuming and laborious. Machine learning provides an alternative path to identify pathogens using supervised learning algorithms. Most current computational tools utilize genomic or protein data to identify bacteria. These methods look for features in the whole genome that correlate to pathogeni ...

    STTR Phase I 2019 Department of DefenseDefense Advanced Research Projects Agency
US Flag An Official Website of the United States Government