You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Graphenated Carbon Nanotube Based MEMS Supercapacitors

    SBC: Faraday Technology, Inc.            Topic: DMEA21A001

    The inherent advantages of MEMS technology, including small size and cost-effective fabrication, make it ideal for numerous application in a wide range of industries ranging from defense, automotive, medical, to consumer industries. For applications that require self-powered MEMS electronics, an integrated energy storage device is required. Due to their small size, excellent cycle life and high po ...

    STTR Phase I 2021 Department of DefenseDefense Microelectronics Activity
  2. Integrated Micro-Supercapacitors via Laser Induced Graphene from Photoresist

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: DMEA21A001

    While supercapacitors have been demonstrated for decades, the biggest challenge is to develop a reliable fabrication strategy which can integrate these devices with current CMOS (complementary metal oxide semiconductor) technology. Current fabrication technologies do not have good compatibility with other electronic components or cannot manufacture the supercapacitor in a small form factor. Conseq ...

    STTR Phase I 2021 Department of DefenseDefense Microelectronics Activity
  3. Energy & Power Dense Supercapacitor: On-Chip Integration in MEMs Fabrication

    SBC: MAINSTREAM ENGINEERING CORP            Topic: DMEA21A001

    Due to recent advances in the field of microelectronics, there is an increasing demand for micro-sized energy storage devices that are capable of being incorporated into and provide energy for MEMS devices. In order to continue to enable this technological growth, and the benefits that stem from it, the storage density of electrical energy must also continually be improved, especially with respect ...

    STTR Phase I 2021 Department of DefenseDefense Microelectronics Activity
  4. Developing a Just-in-Time Refresher Trainer for Advanced Life Support in Austere Regions

    SBC: UNVEIL LLC            Topic: DHA20B001

    Early recognition of impending decompensation and appropriate intervention is critical to patient survival in many situations; yet, military personnel receive limited training about the early signs of decompensation through established training courses. Descriptions of respiratory distress, shock, and poor perfusion may be offered in training, but with little opportunity to practice recognizing th ...

    STTR Phase I 2021 Department of DefenseDefense Health Agency
  5. A rapid high-throughput device to isolate antibiofilm bacteriophage

    SBC: GUILD ASSOCIATES INC            Topic: DHA20B003

    Multi-drug resistant (MDR) bacterial infections are a global public health crisis with ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp, and Escherichia coli.) pathogens particularly troublesome. Wound infection is usually acquired in the hospital setting and is a significant source of morbidity and morta ...

    STTR Phase I 2021 Department of DefenseDefense Health Agency
  6. Cervical Spine Health Improvement Products

    SBC: SWITCHBOX INC            Topic: DHA18B001

    Most standard-of-care tools and techniques for evaluating neck disorders are subjective, unreliable, and do not provide actionable information for providers, payers, and organizations to deliver efficient and effective care. This lack of objective neck he

    STTR Phase I 2019 Department of DefenseDefense Health Agency
  7. Computerized Robotic Delayering and Polishing System

    SBC: SPECTRAL ENERGIES LLC            Topic: DMEA18B001

    The proposed research and technical objectives in this project deal with computerized automatic delayering and polishing system that would be applicable to both commercial and government semiconductor device research and development with applications including Failure Analysis (FA), Fault Isolation (FI), and Reverse Engineering (RE) of semiconductor microelectronic devices. This project could hel ...

    STTR Phase I 2019 Department of DefenseDefense Microelectronics Activity
  8. Combat Casualty Handoff Automated Trainer (CCHAT)

    SBC: SOAR TECHNOLOGY INC            Topic: DHA17B001

    Combat casualty handoffs are critical communication moments during which responsibility for the patient and important casualty information is transferred between providers. The nature of these handoffs requires specialized training, for which no standardized framework currently exists. The proposed effort aims to develop a capability, compatible with current DoD systems, that provides caregivers w ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  9. CCHAT Handoff Protocol

    SBC: SOAR TECHNOLOGY INC            Topic: DHA17B002

    Research has identified that handoffs are particularly important communication processes, during which communication error can lead to patient safety situations. Organizations have created standard practices and training materials to encourage teamwork communication for handoffs, however these do not necessarily capture the needs of military medicine of combat casualty care. Combat casualty handof ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
  10. Oxygen Production and Delivery on Demand

    SBC: GLOBAL RESEARCH & DEVELOPMENT INC            Topic: DHA17B005

    This proposal is in response to the Defense Health Agency 2017 Phase I SBIR topic 17B-005.The approach is the use of a membrane oxygen pump using newly developed nano-thickness membranes with all the layers less than 1 micron total.Nanometer thickness membranes enable more oxygen output per surface area at temperatures of 300-600 C than current state-of-the -art 600-800 C membranes that are 50-300 ...

    STTR Phase I 2018 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government