You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Windable Lithium-ion Conducting Ceramic Electrolytes

    SBC: Chemat Technology, Inc.            Topic: A09AT011

    Lithium-air battery consists of a lithium anode electrochemically coupled to atmospheric oxygen through an air cathode. The major advantages of lithium air batteries are that air cathode active material, oxygen, is not stored internal to cell system and lithium anode being extremely lightweight metal with a highest theoretical specific energy density. This energy density is well comparable with t ...

    STTR Phase I 2010 Department of DefenseArmy
  2. Wearable Neurophysiological Monitoring Device for Circadian Rhythm Assessment and Intervention

    SBC: Cognionics, Inc.            Topic: A16AT014

    This Phase I STTR project will develop a platform to demonstrate high-quality, multi-modal acquisition of neurophysiological signals, including EEG, heart rate/blood oxygenation via photoplethysmography (PPG), electrodermal (EDA) activity, temperature plus environmental factors such as ambient light and sound in a simple, wearable headband. The hardware will be coupled with the development of a cl ...

    STTR Phase I 2016 Department of DefenseArmy
  3. Vacuum Integrated System for Ion Trapping

    SBC: COLDQUANTA, INC.            Topic: A15AT009

    We propose to develop a compact, integrated ion trap quantum system for quantum sensor, timekeeping, and computing applications. To do so, we leverage ColdQuantas expertise in miniature ultra-high vacuum (UHV) and atom chip technology and Duke Universitys expertise in microfabricated surface ion traps and quantum information processing experiments. We will produce a manufacturable, commercializa ...

    STTR Phase II 2016 Department of DefenseArmy
  4. Using the Conditional Moment Closure Method to Assess the Effects of Turbulence Chemical Kinetics

    SBC: REACTION SYSTEMS, INC.            Topic: A16AT001

    The ability to accurately design and predict the performance of combustion-based machinery like gas turbine engines is important in improving their performance, increasing their fuel economy, lowering operating costs, and decreasing pollutant emissions. Almost all of the flows are turbulent in industrial combustion applications, therefore understanding the interaction between turbulence and combu ...

    STTR Phase I 2016 Department of DefenseArmy
  5. Ultra Fine Grain Steel Alloys by Severe Plastic Deformation

    SBC: TRANSITION45 TECHNOLOGIES INC            Topic: A10AT001

    This STTR program proposes to exploit the tremendous benefits that could be offered by the development of ultra fine grain steel alloys for application to the production of high performance components for military rotorcraft applications. A severe plastic deformation technology based on isothermal forging technologies will be explored here. The goal is to demonstrate a practical, production leve ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Ultrafast Physical Random Number Generation Using Chaos

    SBC: Torch Technologies, Inc.            Topic: A14AT002

    Random numbers are essential for a growing number of modern applications. As computer speed and communications bandwidth have increased the potential for practical streaming cipher and large-scale Monte Carlo simulations have become technologically feasible. For these and other applications, ultrafast random number generators are essential. This is intuitively clear. Additionally, however, the ide ...

    STTR Phase II 2016 Department of DefenseArmy
  7. Topological Data Analysis and Wide Area Detection of Chemical and Biological Contamination

    SBC: FOLDED STRUCTURES COMPANY LLC            Topic: A10AT020

    Topological data analysis is a new mathematical method used to study these massive data sets that arise in a variety of situations including military operations and national security. The use of passive infrared sensors for a wide area detection system involving chemical and biological contaminants produces massive amounts of hyperspectral image data. Recent research in this area include fast al ...

    STTR Phase I 2010 Department of DefenseArmy
  8. Sustainable Materials for Thermal Management of Base Camps

    SBC: HI-Z TECHNOLOGY, INC.            Topic: A10AT024

    Hi-Z Technology, Inc. (Hi-Z) and the University of California San Diego propose to adapt Hi-Z’s innovative Quantum Well (QW) thermoelectric (TE) technology to develop a TE cooler for the Army’s base camp tents. The cooler is to be embedded in the flexible tent materials and powered by electricity generated by photovoltaics. Hi-Z has developed nanocomposite QW TE materials that have high Figur ...

    STTR Phase I 2010 Department of DefenseArmy
  9. Software Tools for Scalable Quantum Validation and Verification

    SBC: SC SOLUTIONS, INC.            Topic: A18BT011

    In this Small Business Technology Transfer (STTR) Phase I project, SC Solutions, teaming with Sandia National Laboratories (SNL), will demonstrate the feasibility of a scalable Quantum Computing Validation & Verification (QCVV) tool that will allow quantum computing researchers to rapidly and conveniently test and benchmark their quantum computing systems. While several QCVV techniques have been d ...

    STTR Phase I 2019 Department of DefenseArmy
  10. Simultaneous Imaging of Velocity and Temperature Fields in Reacting Flows using Thermographic Phosphors

    SBC: METROLASER, INCORPORATED            Topic: A09AT003

    A method is proposed for the simultaneous imaging of temperature and velocity fields inside combustion chambers to enable experimental data on turbulent heat fluxes needed for model validation and development. Applications include turbine engines, afterburners, internal combustion engines, and boilers. Temperature imaging is proposed with laser-induced luminescence imaging of phosphor particles su ...

    STTR Phase I 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government