You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Accelerating Metagenomics Using Graphics Processing Units

    SBC: Multicoreware, Inc.            Topic: 35a

    A key application of the technological breakthrough associated with decreased cost of DNA sequencing is metagenomics. Metagenomics is the process of sequencing DNA from whole ecosystems, rather than individuals or cultures. This approach has the potential to allow the dissection of microbial ecosystems in biofuel producing agricultural land, toxic contaminated sites and hydrocarbon recovery enviro ...

    STTR Phase I 2010 Department of Energy
  2. Advance Additive Manufacturing Method for SRF Cavities of Various Geometries

    SBC: RADIABEAM TECHNOLOGIES, LLC            Topic: 34a

    Current state-of-the-art SRF accelerating cavities require the use of many complex and expensive techniques throughout their fabrication/performance cycle. This project will utilize a novel Additive Manufacturing (AM) process to produce nearly monolithic SRF niobium cavities of arbitrary shape with features such as optimized wall thickness and/or integrated stiffeners, greatly reducing the cost a ...

    STTR Phase II 2013 Department of Energy
  3. Advanced Computation Methods towards High-Resolution Fiber Optic Distributed Acoustic Sensing

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: 21a

    Commercial-scale geothermal reservoirs are thousands of feet below the Earth’s surface, so scientists rely on indirect measurements to reconstruct 3D subsurface reservoir maps from seismic vibrations, electromagnetic waves, or gravity measurements. Geothermal operators typically use electromagnetic or gravity surveys, but seismic surveys are preferable because they enable higher-resolution 3D su ...

    STTR Phase I 2019 Department of Energy
  4. Advanced Methods for Predicting 3D Unsteady Flows Around Wind Turbines

    SBC: CONTINUUM DYNAMICS INC            Topic: 39a

    Wind power has an important role in satisfying the power needs of the United States. Since wind power is a clean renewable source of energy, it also serves an important role in reducing dependence on fossil fuels, in particular foreign oil supplies, as well as reducing greenhouse gas and carbon emissions. Unfortunately, significant maintenance costs, recently highlighted by a series of blade failu ...

    STTR Phase I 2010 Department of Energy
  5. Advanced Spectroscopic Capabilities for 3-D Synchrotron X-Ray Microscopes

    SBC: Xradia            Topic: 09a

    Many important technology challenges today such as the capacity and life time of batteries require new characterization techniques to understand and improve performance. In the STTR Phase II project, novel x-ray microscope techniques and software are developed to be able to image samples in three dimensions and determine chemical composition and function on a microscopic level. As known from ubi ...

    STTR Phase II 2013 Department of Energy
  6. A Graphene Enhanced SiC- SiC Ceramic Composite Bonding Solution for Generation IV

    SBC: MC Technologies LLC            Topic: 20b

    Ceramic matrix SiC-SiC composites are currently the leading candidate for Generation IV nuclear reactor fuel cladding and other structural components, due to their excellent thermal and chemical stability under extreme conditions. However, robustly joining SiC structures when exposed to such harsh operating conditions still presents a major roadblock. A novel bonding joint compound leveraging grap ...

    STTR Phase I 2019 Department of Energy
  7. A Mesh Free Framework for Mechanical Simulations of Microstructure Data Files

    SBC: CFD RESEARCH CORPORATION            Topic: 07a

    The Exascale Computing Project is tasked to develop the next generation of high performance computing systems capable of computing at 50 to 100 times faster than current HPC systems. Computing at this extreme-scale will significantly enhance the value of materials modeling and simulation to basic materials research and engineering In particular, computing at the extreme scale will enable a higher ...

    STTR Phase I 2019 Department of Energy
  8. Amplifiers for High Repetition Rate Diode-Pumped Ultra-Intense Femtosecond Lasers

    SBC: XUV LASERS, INC.            Topic: 25c

    The problem being addressed is the development of high intensity ultrashort pulse lasers, in recognition that today’s ultra-high intensity lasers are limited to repetition rates of < 10 Hz. Technical solutions are sought to enable the generation of high energy (joule-level) laser pulses that can be focused to highly relativistic intensity at high repetition rates (100-1000 Hz). The proposed proj ...

    STTR Phase I 2019 Department of Energy
  9. A Multi-physics Analysis Capability for Engine Materials

    SBC: Sunergolab Inc.            Topic: 03b

    Computer-aided Engineering software that apply the Finite Element Method to perform a multi-physics analysis have received widespread acceptance for traditional macro-scale material systems. Challenges persist in the modeling of complex coupled processes in environmental/thermal barrier coatings (E/TBCs) used to protect substrate material against the corrosive environment in the hot section parts ...

    STTR Phase I 2019 Department of Energy
  10. A Novel, Microscale, Distributable Sensor Technology for Ionizing Radiation

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA14B004

    Terrorist use of radioactive nuclear materials via nuclear and/or radiological dispersion devices (dirty bombs) is a serious threat. Therefore, it is crucial to detect proliferation of nuclear material. Critical challenges include: (a) high sensitivity detection of signature emissions from radioactive isotopes, and (b) cost-effectiveness for deployment of sensor networks across large storage facil ...

    STTR Phase II 2019 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government