You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. High Density Capacitors for Compact Transmit and Receive Modules

    SBC: Bioenno Tech, LLC            Topic: N17AT011

    Development of high-energy-density, low-loss capacitors for power conversion/conditioning systems is an enabling technology to achieve the objective of reducing size, weight, and cost of transmit and receive (T/R) modules in modern radar and electronic warfare transmitters. Among capacitor technologies available, multilayer ceramic capacitors (MLCCs) are receiving more attentions. At present, howe ...

    STTR Phase II 2019 Department of DefenseNavy
  2. Information-based Norms on Flow, Operations and Traffic Over Networks (INFOTON)

    SBC: ISEA TEK, LLC            Topic: N18AT027

    The Internet of Things (IoT) connects people, data, and "things" (e.g., software, sensors, platforms), facilitating the translation of information into actions. Although naval platforms’ networks and communication suites have evolved significantly in the past few years to support such required connectivity, one of the greatest technical challenges still facing the military community is the proce ...

    STTR Phase II 2019 Department of DefenseNavy
  3. Low Cost Magnetic Sensor for Mine Neutralizer Identification and Charge Placement

    SBC: QUSPIN INC.            Topic: N17AT013

    Optically pumped magnetometers provide very high performance but they cost tens of thousands of dollars, and they are large and power hungry. Recently we successfully developed and commercialized laser pumped magnetometers with size, weight and power consumption that is an order of magnitude below current state-of-the-art without sacrificing performance. In this project, the focus will be on produ ...

    STTR Phase II 2019 Department of DefenseNavy
  4. Prediction of Rotor Loads from Fuselage Sensors for Improved Structural Modeling and Fatigue Life Calculation

    SBC: TECHNICAL DATA ANALYSIS, INC.            Topic: N17AT009

    Phase I addressed the technological gap in the predictive capabilities of CFD/FSI in the context of hybrid loads/sensor models used in an aircraft’s fatigue life tracking program for critical fuselage and dynamic components across the full flight regime. It demonstrated these technology advancements: (1) a combined rotor, fuselage aeroelastic model; (2) empirical rotor hub loads prediction from ...

    STTR Phase II 2019 Department of DefenseNavy
  5. Risk-Based Unmanned Air System (UAS) Mission Path Planning Capability

    SBC: BARRON ASSOCIATES, INC.            Topic: N17BT034

    Current aircraft operations within the National Airspace System (NAS) rely heavily on the presence of an on-board pilot to safely manage the flight. Integration of Unmanned Aircraft Systems (UAS) into the NAS requires a high confidence that these operations can meet or exceed the safety afforded through manned operations. Specifically, these UAS operations must not pose an undue risk to persons, s ...

    STTR Phase II 2019 Department of DefenseNavy
  6. Integrated learning-based and regularization-based super resolution for extreme MWIR image enhancement

    SBC: Opto-knowledge Systems, Inc.            Topic: N17AT016

    OKSI and Northwestern University propose to develop a single-image super-resolution (SR) methodology for mid-wave infrared (MWIR) imagery that combines learning-based and regularization-based approaches to produce extreme enhancement of low-resolution images. We will also develop a detector-limited imaging system specifically designed to be used with the SR methodology for which even higher levels ...

    STTR Phase II 2019 Department of DefenseNavy
  7. Cognitive Adaptation and Mission Optimization (CAMO) for Autonomous Teams of UAS Platforms

    SBC: Opto-knowledge Systems, Inc.            Topic: N17BT035

    The Navy needs cognitive control capabilities that enable an autonomous robotic team comprised of a ground control station node and a team of UAS platforms to operate independently (or with minimal human oversight) while carrying out complex missions. A cognitive control capability needs to be developed that concurrently optimizes the balance of mission risk / performance with respect to the Navy ...

    STTR Phase II 2019 Department of DefenseNavy
  8. Smart Baseplate for Additive Manufacturing

    SBC: Luna Innovations Incorporated            Topic: DLA18A001

    Additive manufacturing (AM) has rapidly evolved into a valuable technique for making parts which, at times, cannot be fabricated through conventional machining methods, or for fabrication of small quantities of complex parts. One challenge in the area of AM is the lack of real-time feedback on the fabrication process and the quality of the part being made. This is especially critical given the rel ...

    STTR Phase II 2019 Department of DefenseDefense Logistics Agency
  9. Protocol Feature Identification and Removal

    SBC: P & J ROBINSON CORP            Topic: N18AT018

    Protocols used for communication suffer bloat from a variety of sources, such as support for legacy features or rarely used (and unnecessary) functionality. Traditionally, the Navy subscribes to a blanket adoption of a standard protocol "as is". Unnecessary features are active and can be accessed by both internal and external systems creating security vulnerabilities. PJR Corporation's (PJR's) Pha ...

    STTR Phase II 2019 Department of DefenseNavy
  10. Situational Awareness for Mission Critical Ship Systems

    SBC: IERUS TECHNOLOGIES INC            Topic: N18AT009

    With the advent of the Navy’s newest classes of all-electric vessels, the interdependence and functional correlation of the power plant with other mission-critical ship systems such as integrated cooling, weapons, navigation, air surveillance, and IT control network systems, maintaining optimal oversight and control of power distribution aboard ship becomes increasingly challenging. As the opera ...

    STTR Phase II 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government