You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

  1. Advanced Modular, Energy Storage Technology

    SBC: ALTAIRNANO, INC.            Topic: N091053

    The SBIR Phase I proposal is designed to improve the high end temperature performance of Altairnano''''s nano Lithium titanate batteries and will develop an equivalent circuit model capturing the transient dynamics of Altairnano’s 50 Ah cell. Altairnano will study the effects of various materials and the interactions between them to determine the best electrode material combination in order to e ...

    SBIR Phase I 2009 Department of DefenseNavy
  2. Development of a Total Residual Oxidant Sensor Development of a Total Residual Oxidant Sensor

    SBC: HALOGEN SYSTEMS, INC.            Topic: N092152

    Recent efforts at improving shipboard operations have focused on desalination systems. One area in which manpower may be significantly reduced is in the monitoring chlorine residuals from hypochlorite enhanced streams that are used for periodic biofouling control flushes of microfiltration membranes. These are used for pretreatment of seawater prior to exposure to reverse osmosis membranes used fo ...

    SBIR Phase I 2009 Department of DefenseNavy
  3. Advanced Lithium-ion Modular Energy Storage Batteries

    SBC: K2 ENERGY SOLUTIONS, INC.            Topic: N091053

    K2 Energy Solutions, Inc. will address the Navy’s energy storage requirements by designing and fabricating a modular battery system similar to those the company has already developed for high performance electric vehicles. K2 develops and manufactures advanced lithium-ion energy storage systems based on intrinsically safe and inexpensive lithium iron phosphate cathode materials.

    SBIR Phase I 2009 Department of DefenseNavy
  4. Development of a Miniature, Vibro-Mechanical Energy Harvester for Powering Wireless Sensors

    SBC: MicroStrain, Inc.            Topic: N07178

    A major barrier to the widespread adoption of wireless sensors for structural health monitoring is the requirement to power the network of wireless nodes. Batteries have a limited lifespan, adding significant size, weight, and costs to the wireless sensor network,and may represent a long term environmental problem. Battery maintenance can be eliminated by harvesting energy from the environment. Fo ...

    SBIR Phase II 2009 Department of DefenseNavy
  5. Control Surface Buffet Load Measurement

    SBC: MicroStrain, Inc.            Topic: N091013

    Structural monitoring of Navy aircraft is of critical importance as the fleet ages. One critical area includes the control surfaces, which are subject to intense, dynamic buffet loading which can lead to structural cracking. The highly transient nature of buffet loading makes it difficult to measure using conventional sensors. We propose to solve this problem by combining a network of time-synchro ...

    SBIR Phase I 2009 Department of DefenseNavy
US Flag An Official Website of the United States Government