Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY19 is not expected to be complete until June, 2020.

  1. Multimode Chiroptical Spectrometer for Nanoparticle Characterization

    SBC: Applied Nanofluorescence LLC            Topic: None

    This project will develop a new scientific instrument optimized for the advanced characterization of near-infrared fluorescent nanoparticles that can exist as left- or right-handed structures (enantiomers). Single-walled carbon nanotubes (SWCNTs) are the leading current example of such nanomaterials. Applied NanoFluorescence, LLC (ANF) proposes a novel multi-mode chiroptical spectrometer that can ...

    SBIR Phase II 2019 Department of CommerceNational Institute of Standards and Technology
  2. HIGH STRENGTH, WATER-FILLED CERAMIC NANOCOMPOSITE MICROCAPSULES WITH LOW PERMEABILITY FOR SELF-SEALING FUEL BLADDERS

    SBC: Nanosonic Inc.            Topic: N19BT030

    During the proposed Navy STTR program, NanoSonic and Virginia Tech will design and synthesize innovative, high strength ceramic nanocomposite microcapsules filled with > 80 volume percent water that are empirically optimized to function as readily dispersed powdered additives with long-term water retention, durability during air craft bladder production, and rupture during ballistic shock. NanoSon ...

    STTR Phase I 2019 Department of DefenseNavy
  3. Robust, Low Permeability, Water-Filled Microcapsules

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: N19BT030

    The Navy is actively developing a self-sealing, water-activated fuel bladder to mitigate fuel leaks upon mechanical shock (e.g. penetration by a .50 caliber bullet). To circumvent the requirement of an external water source to activate the self-sealing, this system will require water-filled microcapsules that can be incorporated directly into the polymeric matrix of the fuel bladder. Upon mechanic ...

    STTR Phase I 2019 Department of DefenseNavy
  4. Repurposing Computational Analyses of Tactics for Training Assessments

    SBC: Prevailance, Inc.            Topic: N18AT003

    Data generated by training exercises needs to be consolidated and processed to derive more efficient, effective and adaptive training scenarios through training objective and measures of performance analysis. The main technical challenges addressed by this solution are: data from diverse sources must be pre-processed (i.e., validated, cleaned, synchronized) and loaded into a data warehouse; the ce ...

    STTR Phase II 2019 Department of DefenseNavy
  5. Temperature Sensing Submarine ISR Buoy / Surface Ship Sensor Tow Cable

    SBC: Makai Ocean Engineering, Inc.            Topic: N18AT017

    The U.S. Navy currently utilizes a number of towed systems from surface ship and submarines for sensing and communication applications. In a number of these cases, a tow cable extends either down from a surface ship or up from a submarine through the upper part of the water column where seawater temperature can be both highly variable vs. depth and dynamic in time and geographic location. Having a ...

    STTR Phase II 2019 Department of DefenseNavy
  6. Advanced Manufacturing and Material Measurements Software Tool Weave ™ for the Acceleration and Automation of SEM Image Analysis in the Semiconductor Industry

    SBC: Sandbox Semiconductor Incorporated            Topic: None

    In this Phase I SBIR proposal, SandBox Semiconductor™ proposes to develop an Advanced Manufacturing and Material Measurements software tool called Weave ™ for accelerating and automating SEM image analysis for the semiconductor industry. During the development of a new manufacturing process line for a semiconductor device, tens of thousands of scanning electron microscopy (SEM) images are take ...

    SBIR Phase I 2019 Department of CommerceNational Institute of Standards and Technology
  7. Nanomachine Device for Semiconductor Process Control Monitoring

    SBC: Xallent LLC            Topic: None

    Conventional characterization and test methods are increasingly ineffective when applied to structures less than 100 nanometers, causing challenges across R&D, process control and failure analysis. An increasing number of subtle defects become prominent drivers of failure as device size and operating margins decrease, e.g., processing anomalies in thin gate oxides, substrate problems related to do ...

    SBIR Phase I 2019 Department of CommerceNational Institute of Standards and Technology
  8. Gap-Free Model-Based Engineering for Manufacturing and Analysis: Digital Thread without Translation

    SBC: Nvariate, Inc.            Topic: None

    Modern Model-Based Enterprise / Engineering (MBE) systems rely on freeform surfaces built as complex combinations of geometric primitives to define engineered objects. Unfortunately, the intersection of freeform surfaces in MBE applications results in highly approximated solutions, degrading models that cost billions annually by US industry to fix. Current technology limits the abilities of users ...

    SBIR Phase I 2019 Department of CommerceNational Institute of Standards and Technology
  9. Easy-to-use, Autonomous Bin-picking and Assembly Operations for the Manufacturing Industry

    SBC: Robotic Materials Inc.            Topic: None

    We will develop a series of object manipulation primitives to pick up and assemble standard mechanical parts such as screws, gears and pulleys that can be configured without any programming skills. Building up on a smart robotic gripper, 3D perception and machine learning algorithms, we will design a graphical user interface for the Universal Robot E-Series that allows an user to label arbitrary 3 ...

    SBIR Phase I 2019 Department of CommerceNational Institute of Standards and Technology
  10. Atomic Triaxial Magnetometer

    SBC: Vescent Photonics LLC            Topic: N19AT006

    Vescent Photonics and MIT Lincoln Labs (MIT-LL) propose to develop a quantum-based vector magnetometer with low size, weight, power, and cost (SWaP+C) for Navy applications. The proposed system will rely on probing magnetically-sensitive, atomic-like transitions of nitrogen-vacancy (NV) centers in diamond to provide stable, high-bandwidth readout of the vector magnetic field with sub-picotesla sen ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government