You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Blue-Green LED Arrays for Scanned Linear Array Imaging

    SBC: Advanced Technologies/Laboratories Intl            Topic: N/A

    Virtual displays have tremendous potential in defense applications such as virtual reality training, battlefield support, and information systems. Full color displays require red, blue, and green LED arrays of which only red is commercially available. This program teams ATMI, a recognized leader in the GaN growth community, with Reflection Technology, a leader in virtual display technology. ATMI w ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  2. High Dielectric MOSFET Oxides on SiC

    SBC: Advanced Technologies/Laboratories Intl            Topic: N/A

    Increasing thermal and power loads in circuitry demand electrical components which can operate at temperatures up to 400 C and beyond . A combination of high bandgap semiconductors and improved dielectrics is needed to solve this problem. ATMI has maj or programs in production of both SiC/GaN semiconductor materials and high dielectric constant complex oxide thin films, in particular barium stront ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  3. Edge-emitting Nitride-based Bragg Reflector Lasers

    SBC: Advanced Technologies/Laboratories Intl            Topic: N/A

    In this program we will develop narrow linewidth AlGaN Bragg reflector lasers suitable as injection seeds for solid-state W lasers in the range of 280 to 330 nm. These systems are compact, light weight, and low-power consuming and ideal for airborne lidar systems. Bragg reflector lasers have never been fabricated in the nitrides so in this Phase I program we will develop the technologies necessary ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  4. Solar-blind GaN p-I-n UV Photodiodes

    SBC: Advanced Technologies/Laboratories Intl            Topic: N/A

    Photodiodes have high efficiency since the absorption region thickness is large. However, no GaN p-i-n photodiodes have been reported due to the difficulty in achieving low background doped GaN. This Phase I program seeks to determine the increase in quantum efficiency achievable by the use of a thick intrinsic layer inserted in the p-n junction to increase the absorption region thickness. In addi ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  5. Epi-ready SiC Substrates

    SBC: Advanced Technologies/Laboratories Intl            Topic: N/A

    Commercially viable silicon carbide device manufacturing processes depend on an ability to grow'low defect density epitaxial layers. Low defect density epitaxial layers start with pristine SiC substrate surfaces. Epi-ready pristine SiC surfaces are not commercially available. The results of this-programme should remedy this. In Phase I we will demonstrate a cost-effective, reproducible ex-situ sur ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  6. Ion-Implanted 2-D MESFET Technology for Wireless Communications

    SBC: Advanced Device Technologies,            Topic: N/A

    This Phase I project has two primary objectives. The first objective is to evaluate the feasibility of a fully ion implanted fabrication process based on the heterodimensional 2-D MESFET. The new device, the 2-D JFET, will have p+ ion implanted sidegates which laterally modulate a thin, highly doped n-type conducting channel. The 2-D JFET should have excellent high speed, low power characteristics ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  7. Improved Silicon on Insulator (SOI) Manufacturing Technology for Low Power, High Speed, Radiation Hard Devices

    SBC: ADVANCED FUEL RESEARCH, INC.            Topic: N/A

    SOI technology offers the potential for creating radiation hard integrated circuits which can operate at low power and high speed. These advances are important for DoD and space applications and for battery operated devices. SOI is excellent for rad-hard applications because dielectric isolation of active circuitry from the supporting substrate by the Buried OXygen (BOX) layer enhances resistance ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  8. Nitride, Carbide and Non-Oxide In Situ Coatings Using RECVD,A New CVD Method

    SBC: CCVD, Inc dba MicroCoating Technologies (MCT)            Topic: N/A

    Currently, thermal spray (flame and plasma spray) is the only single step method of applying most metal and non-oxide ceramic coatings to large objects. These coatings are usually of a low quality, and thin films cannot be applied. An in situ deposition technique that inexpensively and easily applies nitrides, carbides and other non-oxide thin or thick films in an environmentally friendly manner i ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  9. Production Friendly GaN Coatings Using RECVD, a New CVD Method

    SBC: CCVD, Inc dba MicroCoating Technologies (MCT)            Topic: N/A

    Currently vacuum based methods of PVD and CVD are the only processes for forming GaN thin films and coatings. These methods are usually expensive and are not applied in a production friendly manner. An atmospheric deposition technique that inexpensively and easily applies GaN thin or thick films in an environmentally friendly manner is a priority for any number of DOD and commercial applications. ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  10. Powder Synthesis and Bulk Crystal Growth of Gallium Nitride

    SBC: CERMET, INC.            Topic: N/A

    The primary goal of Phase I work is to demonstrate the feasibility of synthesizing gallium nitride (GaN) powder. Secondarily, this powder will be used to grow high-purity single crystals of GaN from a liquid GaN phase. This would be accomplished using a proprietary variation of the skull melting technique. Since GaN demonstrates peritectic-type decomposition at atmospheric pressure, the entire sku ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government