You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

  1. Development of a Compact Electron Beam Accelerator

    SBC: MICROWAVE TECHNOLGIES, INC.            Topic: N/A

    N/A

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  2. Ultrahigh Quality, Single-Crystal Bulk Silicon Carbide

    SBC: INTRINSIC SEMICONDUCTOR CORP.            Topic: N/A

    Silicon carbide materials will revolutionize semiconductor devices for military and commercial markets. The material's wide bandgap, high electric field breakdown, high thermal conductivity give SiC capabilities that far exceed those of silicon or gallium arsenide. Despite significant progress in silicon carbide development, fundamental defects--most prominently micropipes--persist. If SiC is to s ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  3. Optimal SiC Source Powder for Bulk SiC Growth

    SBC: INTRINSIC SEMICONDUCTOR CORP.            Topic: N/A

    The properties of single-crystal silicon carbide are such that electronics devices from this material have demonstrated remarkable performance characteristics. Despite the material's promise, the material has not yet found acceptance in mainstream device markets because of the material's high cost, among other reasons. This Phase I SBIR proposes an SiC source powder with unique properties which wi ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  4. Novel Technology for Electronic Multilayer Devices

    SBC: Sumi Tech, Inc.            Topic: N/A

    A novel technological approach was recently devised by Sumi Tech engineers to fabricate multilayer electronic components, which enables the manufacture of devices with very high volumetric efficiency and reliability. Inexpensive electrode materials such as copper, or aluminum are potential candidates, since the process takes place at relatively low ambient temperature (e.g., less than 400 C), thus ...

    SBIR Phase I 1996 Department of DefenseMissile Defense Agency
  5. Ion-Implanted 2-D MESFET Technology for Wireless Communications

    SBC: Advanced Device Technologies,            Topic: N/A

    This Phase I project has two primary objectives. The first objective is to evaluate the feasibility of a fully ion implanted fabrication process based on the heterodimensional 2-D MESFET. The new device, the 2-D JFET, will have p+ ion implanted sidegates which laterally modulate a thin, highly doped n-type conducting channel. The 2-D JFET should have excellent high speed, low power characteristics ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  6. Nitride, Carbide and Non-Oxide In Situ Coatings Using RECVD,A New CVD Method

    SBC: CCVD, Inc dba MicroCoating Technologies (MCT)            Topic: N/A

    Currently, thermal spray (flame and plasma spray) is the only single step method of applying most metal and non-oxide ceramic coatings to large objects. These coatings are usually of a low quality, and thin films cannot be applied. An in situ deposition technique that inexpensively and easily applies nitrides, carbides and other non-oxide thin or thick films in an environmentally friendly manner i ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  7. Production Friendly GaN Coatings Using RECVD, a New CVD Method

    SBC: CCVD, Inc dba MicroCoating Technologies (MCT)            Topic: N/A

    Currently vacuum based methods of PVD and CVD are the only processes for forming GaN thin films and coatings. These methods are usually expensive and are not applied in a production friendly manner. An atmospheric deposition technique that inexpensively and easily applies GaN thin or thick films in an environmentally friendly manner is a priority for any number of DOD and commercial applications. ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  8. Sensors-Adaptive Beam Expander

    SBC: LSA            Topic: N/A

    We propose to design and fabricate an adaptive beam expander that can be switched between two magnifications. Specifically, the beam expander provides diffraction-limited performance for laser radar beams with diameters of 1 mm and 3 mm. The adaptive beam expander is lightweight, and it has no moving parts. Because the beam expander is an afocal system, it operates on both outgoing and incoming be ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  9. Nanomaterials for Thermal Management of Electronics

    SBC: Materials Modifications Inc.            Topic: N/A

    As electronic packaging densities increase, more heat is being generated per unit area. The reliability of electronic components is, therefore, increasingly dependent on the ability to transfer heat. Current chip performance is limited in keeping up with the increased power densities, 30% of which is attributed to packaging materials. The disadvantages of current methods of fabrication of thermal ...

    SBIR Phase I 1996 Department of DefenseMissile Defense Agency
  10. Plasma Synthesis of Aluminum Nitride Nanopowders

    SBC: Materials Modifications Inc.            Topic: N/A

    Aluminum nitride is as an ideal thermal management material since it has a very high thermal conductivity and its electrical resistivity is comparable to that of ceramic insulators. Aluminum nitride has thermal conductivity five times greater than alumina and has mechanical strength twice that of alumina and beryllium oxide. The current methods of synthesizing and consolidating aluminum nitride re ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government