You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Collaborative Virtual Combat Simulation Technology For System of Systems Research

    SBC: 3D PIPELINE SIMULATION CORP.            Topic: AF05210

    Our proposal is constructed around a mature, government-owned, distributed simulation architecture known as Joint Force Operational Readiness Combat Effectiveness Simulator (JFORCES) and a proven three-step computer-aided methodology known as Rapid Relational Modeling (RRM). The proposal includes definition, structuring and prioritizing of project goals and requirements using consensus of end-use ...

    SBIR Phase I 2005 Department of DefenseAir Force
  2. Novel Structural Joining Concepts Using 3-D Textile Preforms and Composites

    SBC: 3TEX, Inc.            Topic: AF05248

    Strength and durability of commonly used bonded and bolted composite-to-composite and composite-to-metal structural joints suffer from sharp geometry variations, mismatch of elastic moduli, Poisson's ratios, coefficients of thermal expansion and thermal conductivity of the adherends, altogether causing high stress concentration and premature joint failure. The proposed work introduces several nove ...

    SBIR Phase I 2005 Department of DefenseAir Force
  3. Development of an Innovative Practical UAV with no Moving Aerodynamic Control Surfaces

    SBC: Aerotonomy, Incorporated            Topic: AF05246

    Aerotonomy, Incorporated (AI) and subcontractor Georgia Tech Research Institute (GTRI) will apply the latest knowledge in circulation control and piezo-electric synthetic (zero net mass flux) jet actuators (SJAs) to develop a practical small UAV with no hinged control surfaces. In the area of flow control, low jet momentum coefficient SJAs have been used primarily as a mechanism to keep flow atta ...

    SBIR Phase I 2005 Department of DefenseAir Force
  4. Multifunctional Design of Load Bearing Antenna Structures for Small UAVs

    SBC: Aerotonomy, Incorporated            Topic: AF05T019

    Aerotonomy, Incorporated and our research institution partner Georgia Tech Research Institute (GTRI) will apply the latest knowledge in conformal load bearing antenna design, structural and electromagnetic modeling, and optimization techniques to develop a unique 2 Stage Multi-Disciplinary Optimization (MDO) system that supports the design of highly integrated miniature broadband antenna structure ...

    STTR Phase I 2005 Department of DefenseAir Force
  5. Advanced Commercially Available Inherently Radhard Primitive Cell Designs.

    SBC: American Semiconductor, Inc.            Topic: AF05018

    The Air Force Research Laboratory (AFRL), Military Satellite Communication (MILSATCOM), and National Aeronautics and Space Administration (NASA) have a current and future need for advanced commercially available inherently radhard primitive cell libraries to support new designs for satellites and other spacecraft. American Semiconductor Inc. proposes the use of double gated Flexfet technology for ...

    SBIR Phase I 2005 Department of DefenseAir Force
  6. Material Surface Properties Modifications by Nonequilibrium Atmospheric Pressure Plasma Processing

    SBC: ATMOSPHERIC PLASMA SOLUTIONS, INC.            Topic: AF05T028

    The proposed research will develop a non-equilibrium plasma source for deposition of thin films on refractory materials at temperatures less then 600K. The developed source will also have the flexibility to surface treat thermally sensitive substrates without damage. Our existing non-equilibrium atmospheric plasma source will be optimized for depositing amorphous SiC and ZrO2 thermal barrier mat ...

    STTR Phase I 2005 Department of DefenseAir Force
  7. Advanced Antenna Pattern Prediction Software

    SBC: CEM TECHNOLOGIES, INC.            Topic: AF05T018

    Accurate numerical predictions of performance of antennas on aircraft are important in many problems of avionics design and integration. In particular, such predictions are needed for determination of optimal placement of antenna on an aircraft in order to achieve required coverage. The focus of this project is an investigation and development of high-frequency computational methods and codes for ...

    STTR Phase I 2005 Department of DefenseAir Force
  8. Improved Modeling Tools for High Speed Reacting Flows

    SBC: ENGINEOUS SOFTWARE            Topic: AF05194

    Engineous is uniquely qualified to deliver successful results to the Air Force on this project. Engineous Software is, by far, the industry leader in this area, the PIDO (Process Integration, Design Optimization) space, with over 60% of the worldwide market. Over 250 customers such as Boeing, Lockheed, NASA, Airbus, GE, Pratt & Whitney, and AFRL have achieved success with Engineous Software produc ...

    SBIR Phase I 2005 Department of DefenseAir Force
  9. Neural-Network-Based Adaptive Flow Control for Maneuvering Vehicles

    SBC: GUIDED SYSTEMS TECHNOLOGIES, INC.            Topic: AF04T027

    Conventional flow control methods employ actuation frequencies that are the same order as the characteristic frequency of the flow. Georgia Tech has demonstrated novel high-frequency synthetic jet actuation to modify the apparent aerodynamic shape of aerosurfaces and achieve quasi-steady flow reattachment over an otherwise separated airfoil. Practical application of this technology in dynamic ma ...

    STTR Phase I 2005 Department of DefenseAir Force
  10. Construction of a Force Probe for Characterization of Microscale Features

    SBC: INSITUTEC, INC.            Topic: N/A

    The pressing need exists within industry to accurately measure high aspect ratio microscale structures. For example, diesel injector nozzles are manufactured with microscale holes ranging from 50-200 micrometers in diameter and 3-5 mm depths. One fundamental challenge is to nondestrucvely measure these features in order to validate models, enhance manufacturing processes, and reduce fuel emissions ...

    SBIR Phase I 2005 Department of CommerceNational Institute of Standards and Technology
US Flag An Official Website of the United States Government