You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. STTR Phase II: A Simple and Innovative Approach to the Synthesis of Metal, Alloy, Metal Oxide, and Mixed-Metal Oxide Nanoparticles

    SBC: Cosmas, Inc.            Topic: AM

    This Small Business Technology Transfer (STTR) Phase II project aims to develop a manufacturing process to synthesize metal oxide, sulfide and other nanoparticles. The subject method simply involves mixing of common dry chemical starting materials and heating the resulting precursor material to a modest temperature. The objective is to demonstrate feasibility and scalability of this low-cost man ...

    STTR Phase II 2010 National Science Foundation
  2. Thermal-Shock-Resistant Sensor Windows and Domes for High-Speed Flight Made of Low-Expansion Ceramics

    SBC: Materials and Systems Research, Inc.            Topic: N08T003

    This Small Business Technology Transfer Research (STTR) Phase II proposal from Materials and Systems Research, Inc. (MSRI) and University of Utah (research institution) seeks to fabricate single-phase, polycrystalline tungstate ceramics with densities greater than 99.95% and a mean grain size of less than 1 um. These ceramics have been chosen because of their low thermal expansion and low elastic ...

    STTR Phase II 2010 Department of DefenseNavy
  3. Bimetallic Nanoparticle Catalysts for Reforming of Logistics Fuels

    SBC: NanoScale Materials, Inc.            Topic: A09AT018

    High efficiency, low pollution, and long lifetime make hydrogen-powered fuel cells desirable for portable power generation by the Army. However, it is impractical to transport hydrogen to where it is needed. Instead, reforming a transportable liquid fuel such as JP-8 or diesel fuel can produce the hydrogen for the fuel cell. Noble metal catalysts can speed this reforming, but they are expensive a ...

    STTR Phase I 2010 Department of DefenseArmy
  4. Chemical-Biological Forensic Evidence Container with Agent and Tamper Resistant Tools

    SBC: NanoScale Materials, Inc.            Topic: A10AT003

    The proposed research incorporates several inventions to produce structural components that can be assembled into a highly enhanced chemical-biological (CB) forensic evidence container for transport and storage of contaminated articles. Bio-hazardous materials are frequently encountered in standard investigations, and currently used evidence bags are designed to handle the containment and preserv ...

    STTR Phase I 2010 Department of DefenseArmy
  5. High Surface-Area Metal Oxide Sorbent for Sampling and Infrared Detection of Water Contaminants

    SBC: NanoScale Materials, Inc.            Topic: A10AT018

    Detection and identification of toxic chemical in water is vital for various military, environmental, and industrial applications. Specifically, the Joint Services have a need for rapid detection of trace levels of chemical contamination in water systems. This Small Business Technology Transfer Phase I project will focus on the development of a novel detection system for sampling and identificat ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Metal Oxide-Carbon Nanocomposites for Aqueous and Nonaqueous Supercapacitors

    SBC: NanoScale Materials, Inc.            Topic: T601

    This Small Business Innovation Research Phase I effort focuses on development of novel metal-oxide-carbon nanocomposites for application in pseudocapacitive electrochemical supercapacitors. Specifically, nanocomposites based on manganese, titanium, tantalum and vanadium oxides will be incorporated, at the nanoscale level, with electrically conductive carbon supports. Our focus will be to combine ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  7. Autonomous Aerial Recovery of Micro Air Vehicles

    SBC: PROCERUS TECHNOLOGIES LC            Topic: AF08T014

    The objective of this project is to develop a strategy to recover micro air vehicles into a flying aircraft. Our solution combines three key technologies that have received significant research attention in recent years, namely towed cable systems, cooperative control, and vision-based terminal guidance. We propose to demonstrate the feasibility of using a flying-aircraft mothership pulling an a ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. A Multiscale Modeling and Simulation Framework for Predicting After-Burning Effects from Non-Ideal Explosives

    SBC: REACTION ENGINEERING INTERNATIONAL            Topic: N10AT002

    The primary objective of the proposed effort is to develop a validated computational tool to predict the afterburning of non-ideal munitions containing metal and hydrocarbon fuels. The activities outlined devise a well-coordinated collaboration among researchers from Reaction Engineering International (REI) and the State University of New York at Buffalo (UB). The activities proposed will build on ...

    STTR Phase I 2010 Department of DefenseNavy
  9. A Pressure-Dependent Detailed Chemical Kinetic Model for JP-10 Combustion

    SBC: REACTION ENGINEERING INTERNATIONAL            Topic: N09T011

    Investigations into JP-10 combustion chemistry thus far can be characterized as preliminary. The detailed chemical kinetic mechanisms that have been published are limited in their ability to reproduce experimental data. The combustion chemistry of JP-10 is highly complex, involving hundreds if not thousands of species and thousands of chemical reactions. A detailed kinetic model capable of predict ...

    STTR Phase II 2010 Department of DefenseNavy
  10. Enhanced Methane Production by Co-Gasification of Potassium-Rich Biomass and Coal

    SBC: REACTION ENGINEERING INTERNATIONAL            Topic: 25a

    Natural gas, which is predominantly methane, is widely used by industry as a chemical feedstock and as a fuel for power generation. The increasing price and diminishing domestic supply of natural gas creates an incentive to develop a low-cost replacement for the fuel. Coal gasification is one approach to provide the alternative fuel. However, the dominant commercially available coal gasifiers are ...

    STTR Phase I 2010 Department of Energy
US Flag An Official Website of the United States Government