List

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for the given year is not complete until April of the following year. Annual Reports data is a snapshot of agency reported information for that year and hence might look different from the live data in the Awards Information charts.

  1. High-Power Vertical-Junction Field-Effect Transistors Fabricated on Low-Dislocation-Density GaN by Epitaxial Lift-Off [Phase IIS]

    SBC: MicroLink Devices            Topic: 1

    In this program, we will develop a breakthrough technology that will enable wafer-scale epitaxial lift-off (ELO) of GaN power device heterostructures from low-dislocation-density bulk GaN substrates. This technology will be used to provide a low-cost vertical junction field effect transistors (VJFETs) with high breakdown voltage (greater than 1,200 V) and high current capability (greater than 100 ...

    SBIR Phase II 2014 Department of EnergyARPA-E
  2. High-Power Vertical-Junction Field-Effect Transistors Fabricated on Low-Dislocation-Density GaN by Epitaxial Lift-Off

    SBC: MicroLink Devices            Topic: 1

    In this program, we will develop a breakthrough technology that will enable wafer-scale epitaxial lift-off (ELO) of GaN power device heterostructures from low-dislocation-density bulk GaN substrates. This technology will be used to provide a low-cost vertical junction field effect transistors (VJFETs) with high breakdown voltage (greater than 1,200 V) and high current capability (greater than 100 ...

    SBIR Phase I 2013 Department of EnergyARPA-E
  3. High-Power Vertical-Junction Field-Effect Transistors Fabricated on Low-Dislocation-Density GaN by Epitaxial Lift-Off

    SBC: MicroLink Devices            Topic: DEFOA0000941

    "In this program, we will develop a breakthrough technology that will enable wafer-scale epitaxial lift-off (ELO) of GaN power device heterostructures from low-dislocation-density bulk GaN substrates. This technology will be used to provide a low-cost vertical junction field effect transistors (VJFETs) with high breakdown voltage (greater than 1,200 V) and high current capability (greater than 100 ...

    SBIR Phase II 2013 Department of EnergyARPA-E

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government