You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. X-ray Cinematography for Explosive Events

    SBC: DIVERSIFIED TECHNOLOGIES, INC.            Topic: AF18BT014

    Diversified Technologies, Inc. (DTI) proposes to develop a Multiple Pulse flash X-ray source which can be used to make high resolution X-ray movies of explosive and ballistic tests. The new source will allow researchers to capitalize on recent advances in very high speed cameras which allow high resolution images with many frames. DTI will extend our world-class pulsed power capabilities to this c ...

    STTR Phase I 2019 Department of DefenseAir Force
  2. W-Band RF Instrumentation

    SBC: MAGIQ TECHNOLOGIES, INC.            Topic: A18BT002

    In the program, MagiQ Technologies Inc., in conjunction with professor Gabriel Rebeiz from the University of California, San Diego (UCSD), is proposing a high dynamic range W-band CW/pulse RF power meter for the US Army’s application in the development of W-band radar and satellite communications. Base on unique noise reduction technique in MagiQ technologies, The power meter can operate in a hi ...

    STTR Phase I 2019 Department of DefenseArmy
  3. VLSI Compatible Silicon-on-Insulator Plasmonic Components

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: AF08BT18

    This Small Business Technology Transfer Phase I project will develop ultradense, low-power plasmonic integration components and devices for on-chip manipulation and processing of optical signals. Both passive and active components will be studied. Detailed performance predictions will be obtained through finite element modeling (FEM) of the harmonic Maxwell’s equations. The FEM provides detai ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Visual Algorithms for Navigation and Guidance of UAVs with Autonomous Relational Decisions (VANGUARD)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: ST18C006

    Unmanned systems play a critical role in military operations across a wide range of missions. The DoD’s Unmanned Systems Integrated Roadmap identifies leader-follower tactics, swarming capabilities, sensor advancements, collision avoidance, and GPS-denied solutions as key technologies to support autonomy. Advances in these areas are needed to support coordinated multi-aircraft maneuvers and swar ...

    STTR Phase I 2019 Department of DefenseDefense Advanced Research Projects Agency
  5. Vibration imaging for the characterization of extended, non-cooperative targets

    SBC: Guidestar Optical Systems, Inc.            Topic: AF19AT006

    Locating objects that vibrate is a way to discern potential threats and locate targets. However, current vibrometry technology typically measures only the global vibration of target and cannot create an extended spatial measurement of the vibration profile of the target. These solutions cannot identify what the target is, nor can they locate potential weak spots on the target, because they lack sp ...

    STTR Phase I 2019 Department of DefenseAir Force
  6. Validation and Evaluation of Remote, Interactive Teams of Autonomous Systems (VERITAS)

    SBC: APTIMA INC            Topic: OSD09T004

    different modes, while using different combinations of subsystems. This presents a challenge for the personnel validating the system during design and development; the number of combinations of environments, modes, and subsystems is exponential. They cannot all be tested, so an optimal subset of tests must be run. We propose to develop VERITAS: Validation and Evaluation of Remote, Interactive Tea ...

    STTR Phase I 2010 Department of DefenseNavy
  7. UV Beam Conditioner for Quantum Computing

    SBC: PHYSICAL SCIENCES INC.            Topic: A10AT008

    Physical Sciences Inc. (PSI) and Duke University propose to develop a hybrid, multifunctional, ultraviolet (UV) beam conditioner intended for laser beam switching, deflection, and frequency shifting for quantum computing applications. The beam conditioner consists of three functional blocks, separating the technology for frequency control, fast amplitude control, and electronic beam shuttering int ...

    STTR Phase I 2010 Department of DefenseArmy
  8. Universal textile functionalization chemistry for molecular and particulate attachment based on a novel activation treatment

    SBC: Nano Terra, Inc.            Topic: A18BT024

    Nano Terra and the El-Shafei group (North Carolina State University) propose to demonstrate, optimize and expand a universal platform for textile functionalization. The approach is one developed in the El-Shafei group that has already been explored for its utility in cotton, nylon-cotton blends and polypropylene. The functionalization method imparts a high-level of flame retardancy (without haloge ...

    STTR Phase I 2019 Department of DefenseArmy
  9. Uncooled Photomechanical Terahertz Imagers

    SBC: AGILTRON, INC.            Topic: AF09BT33

    Agiltron and the University of Massachusetts Lowell will develop a transformational terahertz (THz) imager based on Agiltron’s established optical readout photomechanical imaging technology. The photomechanical imager contains a MEMS-based focal plane array that transduces THz radiation into a visible signal for capture by a high-performance CCD imager. By leveraging the advances made in the fie ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Ultrahigh Efficiency Quantum Dot Multi-photon Photovoltaics using Nipi Lateral Architecture

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT20

    Higher efficiency solar cells are needed to reduce solar array mass, volume, and cost for Air Force space missions. Intermediate-band quantum-dot (QD) solar cells can yield dramatically higher efficiencies than current multi-junction (MJ) technologies. However, several issues must be addressed to demonstrate manufacturable, high efficiency devices. CFDRC aims to develop: 1) High-efficiency, ligh ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government