You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Coupled Cluster Methods for Multi-Reference Applications

    SBC: ACES QC, LC            Topic: AF09BT40

    The objective of Phase I is to identify the strengths and weaknesses of the various multi-reference coupled-cluster (MRCC) methods that have been proposed for the description of molecular states depending upon near degeneracies and non-dynamic electron correlation. Such effects are encountered in bond breaking, at transition states, for complex open shell systems like transition metal atoms, and f ...

    STTR Phase I 2010 Department of DefenseAir Force
  2. Thermoelectric material-coated carbon nanotubes as high conductivity thermal interface materials

    SBC: ADA TECHNOLOGIES, INC.            Topic: AF09BT22

    The ever-decreasing size of the electronic microchips and the ever-increasing density of electronic components required to support future Air Force platforms are creating the problem of substantial localized heat generation that can impair component operation. State of the art thermal interface materials (TIMs), that are used to dissipate heat from the source to the spreader in a microchip, are se ...

    STTR Phase I 2010 Department of DefenseAir Force
  3. Fast Trajectory Generation in High Fidelity Geopotentials using Finite Elements, Mascons, and Parallelism

    SBC: ANALYTICAL MECHANICS ASSOCIATES, INC.            Topic: AF09BT02

    We propose to investigate the feasibility of obtaining fast and accurate trajectories using global geopotential models representing departures from the two-body plus J2 terms. The proposed geopotential formulations and numerical integration methods rely on multi-core processors and the emerging massive parallel capabilities of Graphics Processing Units (GPUs) available to common personal computer ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Distributed Adaptive Control of Engine Systems

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: AF08T026

    Aurora and Georgia Tech’s Phase I efforts demonstrated the feasibility of a partially distributed control scheme with separate controllers on the engine core and fan, where the controllers are linked by a supervisory controller. This scheme is representative of the situation encountered in VTOL UAV design and the design of new turbo-props and variable pitch turbofans by the large commercial gas ...

    STTR Phase II 2010 Department of DefenseAir Force
  5. Modeling Auditory Pattern Recognition and Learning with Gradient Frequency Neural Oscillator Networks

    SBC: OSCILLOSCAPE, LLC            Topic: AF09BT12

    This Small Business Technology Transfer research project addresses the perception and learning of complex sound patterns within complex auditory scenes. The objective is to model auditory signal processing, pattern recognition and learning in the human auditory system. Our novel approach simulates the nonlinear signal processing that has been observed in auditory physiology. By mimicking functiona ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Distributed Pattern Detection and Classification in Sensor Networks

    SBC: DCM Research Resources, LLC            Topic: AF09BT09

    In this proposal, DCM Research Resources (DCM), LLC, and Syracuse University propose a highly innovative distributed pattern detection and classification approach, called Compressive Sensing aided Sequential Pattern Detection and Classification (CSASPDC) in Distributed Sensor Network. Our goal is to develop sophisticated approaches that can effectively detect or classify very weak distributed patt ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. A Multi-Modal State and Measurement Filter for RSO Tracking

    SBC: DECISIVE ANALYTICS CORPORATION            Topic: AF09BT11

    Joint Space Operations Center under the United States Strategic Command employs a worldwide network of 29 sensors, known as the Space Surveillance Network (SSN), to track more than 17,000 man-made objects in Earth orbit with sizes 10 centimeters or larger. Decisive Analytics Corporation and the University of Texas Austin Center for Space Research propose an innovate framework for solving stochast ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. Coupled Cluster Theory (CCT)

    SBC: DECISIVE ANALYTICS CORPORATION            Topic: AF09BT40

    Single-reference coupled cluster (SRCC) methods have revolutionized our ability to accurately predict molecular energies and properties. As new developments in theory and computer science extend the application of SRCC methods to larger and larger systems, advancements in coupled cluster methods for studying multi-reference systems have lagged far behind. DECISIVE ANALYTICS Corporation has teame ...

    STTR Phase I 2010 Department of DefenseAir Force
  9. Plasmonic Logic Devices

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: AF08BT18

    Digital electronics is approaching its limits in meeting the demand for increased processing speeds. Photonics, while promising high processing speed, is lacking integration capacity. Plasmonics promises to combine the information capacity of photonics with the integration density of electronics. The team of Luna Innovations, UCLA and Virginia Tech proposes to develop plasmonic logic devices and c ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Hybrid Carbon-Metal Nanowires Mediating Direct Electron Transfer from Redox Enzyme to Electrode

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: AF09BT03

    The electron transferring unit of enzymes – apoenzyme and cofactor are deeply buried inside its protein structure, therefore efficient electronic communication between the electrode and the biocatalytic enzyme is inefficient. The development of a reproducible approach that allows efficient electronic connection between enzymes and electrodes would meet the major technical needs in the developmen ...

    STTR Phase I 2010 Department of DefenseAir Force
US Flag An Official Website of the United States Government