You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Biologically Inspired Micro Aerial Vehicle Design and Development

    SBC: Impact Technologies            Topic: AF08T008

    Impact Technologies, in collaboration with the Georgia Institute of Technology, the Rochester Institute of Technology and the Boeing Company, is proposing to complete the development, testing and evaluation of a novel biologically-inspired Micro Air Vehicle (MAV) conceptualized in Phase I and capable of agile and high endurance flight operations in dense and cluttered urban environments. Phase I a ...

    STTR Phase II 2010 Department of DefenseAir Force
  2. Accelerate Adoption of Galaxy Pro in the Biomedical Research Marketplace

    SBC: GalaxyWorks LLC            Topic: NHGRI

    Project Summary Galactic Core LLC aims to develop a robust, scalable, and managed service for performing enterprise-grade biomedical data analysis. The service will be based on the popular open-source Galaxy application (​https://galaxyproject.org/​), offering unlimited data storage and compute capabilities with an extremely powerful, flexible, and collaborative environment for analyzing data. ...

    STTR Phase I 2019 Department of Health and Human ServicesNational Institutes of Health
  3. A Collective Detection Based GPS Receiver for Small Satellites

    SBC: EMERGENT SPACE TECHNOLOGIES, INC.            Topic: T801

    To solve the problem of autonomous navigation on small satellite platforms less than 20 kg, we propose to develop an onboard orbit determination receiver for small LEO satellites which lack stable Attitude Determination and Control System (ADCS), continuous GPS coverage, or ground tracking. The system is a refinement of existing spaceborne receiver technology built around a new, innovative collec ...

    STTR Phase I 2013 National Aeronautics and Space Administration
  4. A cost-effective bioreactor to advance functional tissue engineering of cartilage

    SBC: Apex Biomedical Company, LLC            Topic: NIAMS

    DESCRIPTION (provided by applicant): Osteoarthritis (OA) is the leading cause of chronic disability in the United States. A clinical goal in the treatment and prevention of OA is to develop replacement cartilage using tissue engineering (TE) technologies. Although TE cartilage presently lacks the mechanical stability of native cartilage, studies have demonstrated that mechanical stability can be e ...

    STTR Phase I 2010 Department of Health and Human ServicesNational Institutes of Health
  5. Adaptive Markov Inference Game Optimization (AMIGO) for Rapid Discovery of Evasive Satellite Behaviors

    SBC: INTELLIGENT FUSION TECHNOLOGY, INC.            Topic: AF17CT02

    Space superiority requires space protection and space situational awareness (SSA), which rely on rapid and accurate space object behavioral and operational intent discovery. The presence of adversaries in addition to real-time and hidden information constraints greatly complicates the decision-making process in controlling both ground-based and space-based Air Force surveillance assets. The focus ...

    STTR Phase II 2019 Department of DefenseAir Force
  6. Adaptive Quantum-Dot Photodetectors with Bias-Tunable Barriers

    SBC: ESENSORS INC.            Topic: AF08BT02

    The proposed research program focuses on design, fabrication, and characterization of quantum-dot infrared photodetectors (QDIPs) which features bias-tunable parameters, including the spectral response, optical gain, and operating time. Wide variations of detector parameters can be realized through the bias-tunable potential barriers surrounding quantum dots. Changes in bias will transform the ba ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Adaptive Quantum-Dot Photodetectors with Bias-Tunable Barriers

    SBC: ESENSORS INC.            Topic: AF08BT02

    Esensors, with SUNY at Buffalo and SUNY at Albany as a subcontractor, will simulate, fabricate, experimentally investigate, evaluate, and deliver aprototype of a new adaptive IR photodetector based on advanced quantum dot (QD) structures. The detector’s operating principle is based on a new concept of the photoelectron lifetime tunable via adjustable potential barriers in QD structures. The phot ...

    STTR Phase II 2010 Department of DefenseAir Force
  8. Additive Manufactured Smart Structures with Discrete Embedded Sensors

    SBC: 3DFlexible Inc            Topic: A17AT024

    Recent advances in 3D structure printing and 3D direct printed electronics have widened the scope of possibilities for the Internet of Things (IoT). New near room temperature 3D direct ink writing (DIW) additive manufacturing (AM) printing processes allow many different type of sensors and they can be embedded anywhere in a structure, which offers several benefits. 1. Protection: sensors face degr ...

    STTR Phase II 2019 Department of DefenseArmy
  9. Additive Manufacturing of Multifunctional Nanocomposites

    SBC: Sciperio, Inc.            Topic: A13AT010

    Sciperio with team members Georgia Institute of Technology and Centecorp have teamed up to develop an Additive Manufacturing Composite using nano and micro fillers. The team will develop multi-scale models that are supported by experimental characterization for advanced 3D Printable materials. Inelastic response of high strength hierarchical structures composed of engineered materials and specif ...

    STTR Phase I 2013 Department of DefenseArmy
  10. Additive Manufacturing Sensor Fusion Technologies for Process Monitoring and Control.

    SBC: ARCTOS Technology Solutions, LLC            Topic: DLA18A001

    This Phase II project aims to assemble the key set of sensor modalities that are needed to reliably view the key process anomalies and properties of laser powder bed fusion. The research team will down-select from the Phase I sensors investigated and integrate the sensors into a sensor fusion software package that facilitates data collection and synchronization, and eventually feedback control of ...

    STTR Phase II 2019 Department of DefenseDefense Logistics Agency
US Flag An Official Website of the United States Government