You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Advanced Rocket Trajectory Propagation Techniques

    SBC: NANOHMICS INC            Topic: MDA17T002

    High-fidelity trajectory propagators are fundamental to the simulation and analysis of launch vehicles, missiles, and satellites. Applications in fields ranging from missile threat analysis to flightpath optimization seek fast and accurate solutions to large numbers of trajectories in federated simulation environments. Due to their robustness, well-known properties, and straightforward implementat ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  2. Test Article Printing with Laser Additive Manufacturing (TAP-LAM) for Threat Surrogate Target Production

    SBC: MV Innovative Technologies LLC (DBA: Opt            Topic: MDA17T001

    Optonicus proposes development of the TAP-LAM (Test Article Printing with Laser Additive Manufacturing for Threat Surrogate Target Production) powder bed fusion and directed energy depositions systems. The TAP-LAM metal additive manufacturing system will advance strategic missile defense system testing capabilities by improving 3D printing methods to rapidly produce large-scale threat surrogate ta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  3. Additive Manufacturing of Metallic Materials for High Strain Rate Applications

    SBC: MRL MATERIALS RESOURCES LLC            Topic: MDA17T001

    Metallic additive manufacturing (AM) is an attractive technology for the production of lethality test articles due to the potential for significantly reduced lead time and manufacturing cost.However, in order to be effective in providing accurate lethality data, the properties of the AM material have to match closely the properties of conventionally manufactured alloys found in real threat targets ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  4. Proactive Risk Monitoring Using Predictive Analytics

    SBC: ARCTOS Technology Solutions, LLC            Topic: MDA16T002

    Presently the missile defense systems are using a reactive and program-centric framework for assessing industrial base risk. The Phase I effort focused on developing a wide and deep network algorithm using Industrial Product-Support Vendor (IPV) Gen II program for predicting the probability of failure. The proposed Phase II effort leverages the Phase I work and will focus on three main goals:(1) I ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
  5. Methodologies for Cost-Effective Measurement of Dynamic Material Properties or Characterization of Materials under Dynamic Loads

    SBC: PROTECTION ENGINEERING CONSULTANTS LLC            Topic: MDA16T003

    Explosions and high-velocity impacts can create strain rates on the order of 105 to 107 s-1. To simulate these events, first-principles codes require material models that are valid at these loading rates. Currently, the amount of test data, material models and material constants for this strain rate range is extremely limited, and an innovative and cost-effective laboratory test procedure is neede ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
  6. Deep Machine learning for risk Analysis and Prediction (D-MAP) in supply chains

    SBC: Intelligent Automation, Inc.            Topic: MDA16T002

    Globalization and digitization have been driving the recent economic growth at the expense of raising the risk level in the supply chain related to fraud, security, and safety, while current practice of supply chain management and risk assessment is lagging far behind. Therefore, commercial industries and government agencies are seeking advanced supply chain risk assessment solutions, which can ef ...

    STTR Phase II 2018 Department of DefenseMissile Defense Agency
  7. Medical Electro-Textile Sensor Simulation

    SBC: LR TECHNOLOGIES, Inc.            Topic: DHP17A001

    In this topic, we plan to design a vital EMF sensor to work under any conditions. The sensor will be integrated with smart clothing and using e-textile materials.

    STTR Phase II 2018 Department of DefenseDefense Health Agency
  8. Medical Device to Assess the Viability of Tissue Prior to Skin Grafting

    SBC: Spectral Md, Inc.            Topic: DHP17A006

    The primary objective of this Phase II proposal is to construct and validate the portable SpectralMD DeepView imaging technology designed previously in Phase I. This device allows surgeons to quickly and objectively assess tissue viability in burn surgery prior to skin grafting. DeepView uses machine learning and multispectral imaging to generate quantitative prognostic images with easily interpre ...

    STTR Phase II 2018 Department of DefenseDefense Health Agency
  9. Dynamic virtual moulage based on thin film adhesive displays

    SBC: ARCHIE MD INC.            Topic: DHA17A002

    Providing Army combat medics with meaningful experience in treatment of battlefield injuries is a particular challenge. Moulage has the potential to assist in acquiring what could otherwise be very hard-to-come-by preparatory experience for distressing real-life emergencies medics and soldiers may encounter in the field. However, current approaches to moulage are limited in their ability to reflec ...

    STTR Phase II 2018 Department of DefenseDefense Health Agency
  10. Lightweight Magnesium Components of a Missile Body

    SBC: Terves LLC            Topic: MDA17T004

    Magnesium alloys have 35% lower density compared to aluminum, with improved temperature stability compared to high strength aluminum.They can also be fabricated with minimum gauge thicknesses considerably thinner than fiber composites, and are weldable, with much higher impact resistance.Traditional magnesium alloys, however, have had lower strengths than more developed aluminum alloys.Powder meta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government